

Via IFAST, GA 101004730

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders eeFACT2022 12-15 September 2022 INFN Frascati National Laboratories (Italy)

International Organizing Committee Overview of tau physcis $+$ $$ at present and future e^+e^- colliders **Y. Li (IHEP, China)**

Istituto Nazionale di Fisica Nucleare

F. Zimmermann (CERN, Switzerland) Alberto Lusiani Scuola Normale Superiore and INFN, sezione di Pisa

Introduction

The tau lepton is a fundamental particle of the Standard Model (SM) and in general it is useful to measure its properties precisely both to test the Standard Model and to search for evidence of physics beyond the Standart model (BSM, NP)

main Standard Model tests and parameters' measurements

- I Lepton Flavour Universality (LFU), i.e. (mainly) charged weak coupling is equal for *e*, μ , τ
	- \triangleright important NP model constraints for observed B anomalies
- I SM-predicted Michel parameters, i.e. decay kinematics dictated by *V* −*A* charged weak current
- **If** measurement of $\alpha_s(m_\tau)$ and test of running of α_s from m_τ to m_Z
- I measurement of $|V_{\text{us}}|$ (alternative to kaon decays, less precise)
- **I** alternative measurement of HVP contribution to muon $g-2$ [muon $g-2$ anomaly]

main New Physics searches

- \blacktriangleright Lepton Flavour Violation (LFV) in tau decay
	- I CPV in tau decay, tau EDM, tau *g*−2

Tau pairs at past, present and future e^+e^- colliders

note: SCT & SCFT tau pairs estimate assuming 10 years of tau-pairs-optimized CM energies running

Conditions for tau physics measurements

- ▶ *Z* peak collisions best for most measurements
	- \blacktriangleright pure and efficient tau pair selection selecting on just one of the two taus
	- \triangleright track multiplicity separates very well $\tau^+\tau^-$ from *q* \bar{q}
	- \blacktriangleright high momenta reduce multiple scattering uncertainty in impact parameter measurements
	- threshold measurements at $E = 2m_π$ ∼ 3.5 GeV best for tau mass
	- In threshold measurements help some LFV searches and tau BRs (super charm-tau factories)
	- B-factories bested LEP with statistics on e.g. small branching fractionss, LFV searches, tau lifetime

LFV searches vigorously pursued

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 4/29

Tau LFV searches probe & constrain New Physics models

Tau LFV limits: present and future with Belle II and LHCb-HL

HL-LHC and HE-LHC opportunities, arXiv:1812.07638 [hep-ph]

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 6 / 29

[Overview of tau physcis at present and future](#page-0-0) e^+e^- colliders

LFV $\tau \rightarrow \mu \gamma$ measured / expected upper limits

FCC estimate for $\tau \to \mu \gamma$

- [1] M. Dam simulation with 2% of full FCC statistics
- [2] M. Dam 2021, guestimate with improved longitudinally segmented crystal EM calorimeter

Other estimates

- \blacktriangleright ESG 2019 docs
- \blacktriangleright my extrapolation to 10y of SCTF limits presented at Tau2021

Plot notes

- \triangleright Red more solid estimates
- \triangleright Orange less solid estimates
- \blacktriangleright dates of future results are arbitrary, for plotting convenience

[Overview of tau physcis at present and future](#page-0-0) e^+e^- colliders

LFV $\tau \rightarrow 3\mu$ measured / expected upper limits

- [1] my guestimate
- [2] M. Dam, Tau2021

Other estimates

- \blacktriangleright ESG 2019 doc
- \blacktriangleright my extrapolation to 10y of SCTF limits presented at Tau2021

Guestimate of FCC expected 90% upper limit on $\tau \rightarrow \mu \mu \mu$

► 2.1 \cdot 10⁻⁸ published Belle limit at 0.782 ab⁻¹

- \blacktriangleright .../(50 ab⁻¹/0.782 ab⁻¹) = 3.3·10⁻¹⁰, BelleII expected upper limit assuming background-free search
- **►** FCC: 5·10¹² Z⁰, 3.3% tau pair decays, 165·10⁹ tau pairs, ~3.6 × 46·10⁹ BelleII tau pairs
- \triangleright estimate $4 \times$ better efficiency at FCC vs. Bellell
	- \triangleright from DELPHI Phys.Lett. B359 (1995) 411-421 vs. BABAR Phys.Rev.Lett. 104 (2010) 021802
- \triangleright muon PID efficiency and purity expected to be better for FCC
- \blacktriangleright in the improbable assumption that search remains backgroound free
	- I 3*:*3·10[−]¹⁰*=*3*:*6*=*4*:*0 = 0*:*23·10[−]¹⁰ estimated FCC 90% upper limit
- \triangleright estimate / assume that
	- \blacktriangleright m_{τ} resolution comparable with *B*-factories
	- \triangleright *E* resolution worse (850 MeV in M. Dam $\tau \to \mu \gamma$ study vs. 50-100 MeV ≈ 75 MeV in *BABAR*)
	- ► therefore search remains background free until $N_{\text{max}}^{\text{Bell II}}/(850 \text{ MeV}/75 \text{ MeV})$
	- \blacktriangleright additional tau pairs improve upper limit proportionally to the square root (estimated bkg uncertainty)
- **►** 3.3 $\cdot 10^{-10}$ · (850 MeV/75 MeV)/ $\sqrt{[3.6 \cdot (850 \text{ MeV}/75 \text{ MeV})]}/4.0 \approx 1.5 \cdot 10^{-10}$ FCC upper limit

Notes for tau LFV searches at FCC

- $\tau \rightarrow \mu \gamma$ reach improves with
- \blacktriangleright energy resolution of EM calorimeter
- angular precision (granularity) of EM calorimeter
- **F** efficiency & purity of muon PID
- $\tau \rightarrow 3\mu$ reach improves with
- \blacktriangleright momentum resolution and tracking reconstruction accuracy
- efficiency & purity of muon PID
- \triangleright other LFV searches profit from electron, pion, kaon PID
- existing Monte Carlo simulation technology seems sufficient

Lepton universality tests

from HFLAV Tau Winter 2022 report

$$
\left(\frac{g_{\tau}}{g_{\mu}}\right) = \sqrt{\frac{\mathcal{B}_{\tau e}}{\mathcal{B}_{\mu e}} \frac{\tau_{\mu} m_{\mu}^{5} f_{\mu e} R_{\gamma}^{\mu} R_{W}^{\mu}}{\mathcal{B}_{\mu e}}}} = 1.0009 \pm 0.0014 = \sqrt{\frac{\mathcal{B}_{\tau e}}{\mathcal{B}_{\tau e}^{5}}}
$$
\n
$$
\left(\frac{g_{\tau}}{g_{e}}\right) = \sqrt{\frac{\mathcal{B}_{\tau\mu}}{\mathcal{B}_{\mu e}} \frac{\tau_{\mu} m_{\mu}^{5} f_{\tau e} R_{\gamma}^{\mu} R_{W}^{\mu}}{\mathcal{B}_{\tau\mu} n_{\tau}^{5} f_{\tau\mu} R_{\gamma}^{\tau} R_{W}^{\tau}}}} = 1.0027 \pm 0.0014 = \sqrt{\frac{\mathcal{B}_{\tau\mu}}{\mathcal{B}_{\tau\mu}^{5}}}
$$
\n
$$
\left(\frac{g_{\mu}}{g_{e}}\right) = \sqrt{\frac{\mathcal{B}_{\tau\mu}}{\mathcal{B}_{\tau e}} \frac{f_{\tau e}}{f_{\tau\mu}}}} = 1.0019 \pm 0.0014
$$

using Standard Model predictions for leptons λ , $\rho = e, \mu, \tau$ (Marciano 1988) $\Gamma[\lambda \to \nu_{\lambda} \rho \bar{\nu}_{\rho}(\gamma)]$ = $\Gamma_{\lambda \rho}$ = $\Gamma_{\lambda} \beta_{\lambda \rho}$ = $\frac{\beta_{\lambda \rho}}{\rho}$ $\frac{3\lambda_{\rho}}{\tau_{\lambda}} = \frac{G_{\lambda}G_{\rho}m_{\lambda}^{5}}{192\pi^{3}} f\left(m_{\rho}^{2}/m_{\lambda}^{2}\right) R_{W}^{\lambda} R_{\gamma}^{\lambda}$ 192π $G_{\lambda} = \frac{g_{\lambda}^2}{\sqrt{g}}$ $\frac{6\lambda}{4\sqrt{2}M_W^2}$; $f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$; $f_{\lambda \rho} = f\left(m_{\rho}^2/m_{\lambda}^2\right)$ $R_W^{\lambda} = 1 + \frac{3}{5}$ 5 m_{λ}^2 M_W^2 $+\frac{9}{7}$ 5 m_ρ^2 M_W^2 $R_{\gamma}^{\lambda} = 1 + \frac{\alpha(m_{\lambda})}{2}$ 2π $/25$ $\left(\frac{25}{4} - \pi^2\right)$; all statistical correlations included

LFU tests with hadronic tau decays

 \blacktriangleright are possible and performed, but less precise

[Overview of tau physcis at present and future](#page-0-0) e^+e^- colliders

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 12 / 29 12 / 29 12 / 29 12 / 29

Tau Lepton universality constrains models for B $R_{D^{(*)-}}^{\tau/\ell}$ $R_K^{\mu/e}$ $\kappa^{\mu/e}$ anomalies

Feruglio, Paradisi, Pattori JHEP 09 (2017) 061 blue points correspond to parameter space region allowed by tau lepton universality

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 13 / 29 13 / 29 13 / 29

Tau Lepton universality constrains models for B $R_{D^{(*)-}}^{\tau/\ell}$ $R_K^{\mu/e}$ $\kappa^{\mu/e}$ anomalies

Feruglio, Paradisi, Pattori JHEP 09 (2017) 061

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 14/29

Tau Lepton universality constrains 4321 models for *B* $R_{D^{(*)-}}^{\tau/\ell} R_K^{\mu/e}$ *K* anomalies

LFU violations in leptonic τ decays and *B*-physics anomalies

- [Allwicher, Isidori, Selimovic, PLB 826 \(2022\) 136903](https://arxiv.org/abs/2109.03833)
- I 4321 NP model for *B* anomalies predicts per mille deviations on tau LFU tests ⇒ future precision measurements of leptonic *fi* decay widths important for testing 4321 models

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 15 / 29 15 / 29 15 / 29 15 / 29 15 / 29 15 / 29

m_z experimental precision

► best experimental facilities are e^+e^- at $\tau^+\tau^-$ threshold, then *B*-factories

- \blacktriangleright FCC
	- \triangleright challenge is systematics from pseudomass distribution modeling
	- \triangleright can use 5-prong decays (narrower pseudomass distribution drop)
	- \blacktriangleright attainable precision on momentum measurement scale appears not to be limiting

τ ^{τ *_r* experimental precision}

- best measurement by Belle on 3-prong vs. 3-prong tau pairs
- expect limiting systematics from absolute length scale calibration on minivertex detector, 100 ppm
- ^I 68 ppm systematics from [∆]*mfi* at current precision
- potential systematics from modeling of measurement bias subtraction
- potential systematics from accuracy of simulation of average radiation energy loss
	- \triangleright would profit from improvements of tau pairs generators
- profits from high-resolution vertex detector close to interation region

[Overview of tau physcis at present and future](#page-0-0) e^+e^- colliders

FCC sensitivity for $\mathcal{B}(\tau \to \ell \bar{\nu} \nu)$

sensitivity estimates very difficult, mostly guestimates

best results from ALEPH global analysis of all tau decays

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 18 / 29 18 / 29 18 / 29 18 / 29

Tau branching fractions notes

- world averages of large BRs still dominated by LEP
- \blacktriangleright background separation from dileptons and hadrons much better
- higher selection purity and efficiency
- \triangleright possible to tag single tau with good efficiency and purity and observe the other one \Rightarrow wonderful base for reducing systematics using data, exploited in particular by ALEPH
- \triangleright *B*-factories improved on small branching fractions using statistics ⇒ FCC statistics 1300² × ALEPH, 175 × Belle, 3.5 × BelleII (& better efficiency w.r.t. *B*-factories)

Important ingredients for precise BR measurements

- \triangleright PID efficiency, purity, accurate PID modeling with control samples
- \blacktriangleright efficiency, purity of π^0 reconstruction, accurate modeling with control samples
- \blacktriangleright improve current poor simulation of high multiplicity invariant mass distributions
- \triangleright improvements on tau pairs Monte Carlo simulations highly desirable
- high statistics samples will help very much on first 3 points, but analyses will be very complex
- FCC is best imaginable context for tau BR measurements

Systematics of main ALEPH tau BR paper, Phys. Rept. 421 (2005) 191

systematics

Total systematic errors for branching ratios measured from the 1994-1995 data sample

All numbers are absolute in per cent. The labels are defined as follows: photon and π^0 reconstruction (π^0), event selection efficiency (sel), non- τ background (bkg), charged particle identification (pid), secondary interactions (int), tracking (trk), Monte Carlo dynamics (dyn), Monte Carlo statistics (mcs), total systematic uncertainty (total).

π ^{τ} **0 systematics**

Total systematic errors for branching ratios measured from the 1994–1995 data sample

All numbers are absolute in per cent. The labels are defined as follows: photon and π^0 reconstruction (π^0), event selection efficiency (sel), non- τ background (bkg), charged particle identification (pid), secondary interactions (int), tracking (trk), Monte Carlo dynamics (dyn), Monte Carlo statistics (mcs), total systematic uncertainty (total).

 \triangleright many systematics but in general all limited only by data vs. MC comparisons non-trivial to extrapolate to $1300²$ more data

Main systematics of ALEPH tau BR paper, Phys. Rept. 421 (2005) 191

- \blacktriangleright non-tau backgrounds
	- \triangleright estimated by varying MC estimate by 30%
	- \triangleright does not trivially scale with luminosity, but can be improved
- \blacktriangleright tau pair selection
	- \triangleright use break-mix method on data and MC, 0.1-0.2% uncertainties dominant systematics from data statistics of tau vs. hadron cut separation
	- \triangleright scales with luminosity, but correlations between hemispheres limit how much
- \blacktriangleright PID
	- \blacktriangleright uncertainties from control samples studies
	- \triangleright partially scales with luminosity, but limited by achievable purity of control samples
- \blacktriangleright photon efficiency
	- \blacktriangleright uncertainties from control samples studies data-MC comparisons
		- \triangleright fit data using predicted MC fake and genuine photon distributions and compare number of genuine photons
		- ▶ compare photons > 3 GeV as function of separation from tracks
		- \triangleright compare converted photons
		- \triangleright compare hadron to electron misidentification
		- \triangleright compare photon identification efficiency
		- **Inducer** photon energy scale calibrated with momentum measurement on high-energy *e* from tau decay
		- \blacktriangleright compare fake photons

Main systematics of ALEPH tau BR paper, Phys. Rept. 421 (2005) 191

$\blacktriangleright \pi^0$ efficiency

- \blacktriangleright compare data and MC D_{ij} distributions (probability $\gamma_i, \, \gamma_j)$ of π^0 mass fit
- \blacktriangleright efficiency for π^0 with unresolved photons
	- ▶ compare data and MC 2nd moment of transverse evergy in calorimeter cells
- \blacktriangleright radiative and bremsstrahlung photons
	- \triangleright compare data and MC distributions
	- \blacktriangleright compare PHOTOS vs. exact calculation for $\tau \to \pi \pi^0 \nu$ with radiative $E_\gamma > 12$ MeV
- \blacktriangleright tracking
	- \triangleright compare data and MC on same sign events events (two tracks missing in one hemisphere)

\blacktriangleright tau decay dynamic

- \blacktriangleright reduced because acceptances are large and flat
- \triangleright will become important with higher statistics
- \triangleright can be partially addressed with iterative concurrent measurements where also invariant mass distributions are fitted on data (complicate)

[Overview of tau physcis at present and future](#page-0-0) e^+e^- colliders

|*Vus* **|**-centric CKM matrix first row unitarity test

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 23 / 29

$|V_{us}|$ determinations using τ branching fractions measurements

Using tau measurements and OPE, no lattice QCD
\n
$$
\frac{R(\tau \to X_{\text{strange}} \nu)}{|V_{us}|^2} = \frac{R(\tau \to X_{\text{non-strange}} \nu)}{|V_{ud}|^2} - \delta R_{\tau, \text{SU3 breaking}},
$$
\nUsing tau measurements and lattice QCD
\n
$$
\frac{\Gamma(\tau \to K^- \nu_{\tau})}{\Gamma(\tau \to \pi^- \nu_{\tau})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_{K\pm}}{f_{\pi\pm}}\right)^2 \frac{\left(1 - m_K^2/m_{\tau}^2\right)^2}{\left(1 - m_{\pi}^2/m_{\tau}^2\right)^2} \frac{R_{\tau/K}}{R_{\tau/\pi}} R_{K/\pi}
$$
\n
$$
\tau \to K/\tau \to \pi
$$
\n
$$
\sum \Gamma(\tau \to K^- \nu_{\tau}) = \frac{G_F^2}{16\pi\hbar} f_{K\pm}^2 |V_{us}|^2 m_{\tau}^3 \left(1 - \frac{m_K^2}{m_{\tau}^2}\right)^2 R_{\tau/K} R_{K\mu 2}
$$
\n
$$
\boxed{\tau \to K}
$$
\n
$$
\text{Requirements}
$$
\n
$$
\sum \text{Cabibbo-suppressed tau BRs}
$$

- \triangleright $\mathcal{B}(\tau \to X_{\text{strange}} \nu)$ from sum of exclusive branching fractions
- tau spectral functions

$\boldsymbol{\alpha_s}$ from tau decay measurements

- $\blacktriangleright \alpha_s(m_\tau)$ from
	- \blacktriangleright $R_{VA} = B(\tau \rightarrow X_d \nu)/B(\tau \rightarrow e \bar{\nu} \nu)$
	- \blacktriangleright tau spectral functions
- tau data competitive
- $\triangleright \alpha_s(m_\tau)$ confirms running of α_s
- ► best experimental inputs e^+e^- facilities at the *Z* peak
	- modest experimental progress since LEP times
	- statistics, clean data, non-trivial analysis needed
	- non-trivial exp. and theory systematics

Recent discussions

- different groups get somewhat inconsistent results disagreements on non-perturbative effects, duality violations
- \blacktriangleright Pich 2019 Boito, Golterman, Maltman, Peris 2019 Pich, Rojo, Sommer, Vairo 2018 Boito, Golterman, Maltman, Peris 2017 Pich, Rodríguez-Sánchez 2016

Requirements

tau spectral functions, tau branching fractions

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 25 / 29

Muon *g***−2** hadronic contribution from tau

Tau spectral functions

- reasonably complete sets only measured at LEP (ALEPH, OPAL)
- limited contributions from *B*-factories
- studies at the *Z* peak are by far the most favourable context
- significant improvements are possible at FCC especially for the poorly measurer rare modes
- analyses are complex and may be limited by manpower availability
- improvements on Monte Carlo simulation desirable

Other tau physics topics

Conclusions

- ► tau physics best done on e^+e^- colliders
- Z-peak conditions are best for most measurements
- threshold tau pair production best for tau mass
- useful experimental features
	- \blacktriangleright precise knowledge of beam energies
	- \blacktriangleright small luminous region
	- precise vertex detector close to luminous region
	- beams polarization

Thanks for your attention!

Backup Slides

Discovery of Tau Lepton

- \triangleright in early 1960's, while digesting muon discovery, searches started for next heavy lepton
- \triangleright photo-production: *e* + nucleus → γ + *X*, γ + nucleus → $\ell^+ \ell^-$ + *X'*
	- ▶ upper limits on m_ℓ in $[0.5, 1.0]$ Gev (SLAC, 1968)
- e^+e^- colliders, $e^+e^- \rightarrow \gamma^* \rightarrow \ell^+ \ell^-$
	- \triangleright exclude m_{ℓ} < 1.15 GeV (ADONE, Frascati, 1974)

MARK 1 at SLAC

- ▶ 1964 proposal of SPEAR e^+e^- collider, max CM energy 4.8 GeV, funded in 1970
- \triangleright 1971 proposal of MARK 1 detector, 1971, Martin Perl et al., proposal topics:
	- ▶ 1) Boson Form Factors, 2) Baryon Form Factors, 3) Inelastic Reactions
	- ▶ 4) Search for Heavy Leptons $(\tau_1 \rightarrow e \bar{\nu} \nu, \tau_2 \rightarrow \mu \bar{\nu} \nu)$
- \blacktriangleright theorists compute expected distributions (Tsai, Sakurai)
- \triangleright 1974 beginning of data-taking
- \triangleright 1975 evidence for "anomalous lepton production" (24 events)
- \blacktriangleright 1976 discovery "simplest hypothesis" ... "production of a pair of heavy leptons"
- ▶ 1995 Martin Perl gets Nobel prize

FCC tau physics references (non exhaustive)

FCC CDR

I Mogens Dam: Tau 2018, FCC Jan 2019, Tau 2021

- \blacktriangleright M. Dam, SciPost Phys. Proc. 1, 041 (2019)
- \blacktriangleright M. Dam, Eur. Phys. J. Plus 136, 963 (2021) DOI:10.1140/epjp/s13360-021-01894-y
- \blacktriangleright A.L. ESG update 2019, FCC Jan 2020, Charm 2021, Tau 2021, FCC-Ita Dec 2021

 \blacktriangleright European Strategy Update 2019, [arXiv:1910.11775 \[hep-ex\]](https://arxiv.org/abs/1910.11775)

Tau Lifetime

- 260 $\;$ Belle II guestimate, extrapolating from 0.711 ab $^{-1}$ to 50 ab $^{-1}$
	- 5 FCC, stat. only extrapolation from ALEPH (1e5) to FCC (1.65e11) tau pairs

 \Rightarrow what are the limiting systematics?

tau life

Tau Lifetime systematics at LEP

DELPHI main systematics, Eur.Phys.J.C36:283-296,200

- \blacktriangleright IP impact parameter difference on 1-1-prong tau pairs
	- \triangleright trimming, backgrounds, impact parameter resolution, alignment ment
experiments and these systematics special 1-1230 percents scale with 1-1300 percents scale with 1-1300 percents and the substitution 1-1230 percents and the substitution 1-1230 percents and the substitution 1-1230 per
- \blacktriangleright MD miss-distance on 1-1-prong tau pairs
	- \triangleright resolution on MD, bias, selection
- DL transverse decay length on 3-1 and 3-3 prong tau pairs
	- \blacktriangleright alignment

ALEPH main systematics, Phys.Lett.B414:362-372,1997

- \triangleright MIPS, momentum-weighted impact parameter sum
	- \triangleright resolution on impact parameter sum, bias (from MC)
- ▶ 3DIP 3D impact parameter, Z. Phys. C 74, 387-398 (1997)
	- \triangleright bias (from MC), vertex chisq cut
- \blacktriangleright IPD, impact parameter difference
	- \blacktriangleright resolution and trimming of outliers
- DL, decay length
	- \blacktriangleright vertex chisq cut

including alignment systematic control 1≥00

Tau Lifetime systematics at FCC

Alignment systematic

- alignment calibration precision improves with statistics
- \blacktriangleright misalignment effects zero at first order for uniform azymuthal acceptance S.R.Wasserbaech, Nucl.Phys.Proc.Suppl. 76 (1999) 107-116
	- \triangleright still, questionable how far this holds
- \blacktriangleright related systematic that does not scale absolute length scale of vertex detector average elements spacing, realiable to 10^{-4} or 100 ppm

Systematics from kinematics of tau decay

$$
\blacktriangleright \ \tau_{\tau} = \lambda_{\tau}/\beta\gamma = \lambda_{\tau}/\frac{\sqrt{E_{\tau}^2-m_{\tau}^2}}{m_{\tau}} = \lambda_{\tau}/\frac{\sqrt{(E_{\text{beam}}-E_{\text{rad}}^{\text{MC}})^2-m_{\tau}^2}}{m_{\tau}}
$$

systematic [ppm]

 $\frac{1}{68}$ $\frac{E_{\text{beam}}}{m}$

- 68 m_{τ} PDG 2019
 7 m_{τ} possible m 7 m_r possible measurement at Super Charm-Tau Factories
2 MC accuracy on average radiation energy loss (*) (estimation
	- MC accuracy on average radiation energy loss (*) (estimated 100 ppm for BABAR)

(*) depends on

accuracy of generator, can be checked measuring momentum distribution of di-muon events

 \blacktriangleright accuracy of simulation of efficiency of selection procedure vs. E_{τ} (scales with luminosity)

[Overview of tau physcis at present and future](#page-0-0) e^+e^-

colliders [Backup Slides](#page-29-0)

Tau Mass (from M.Dam, FCC-ee Workshop Jan 2019) **Tau Mass (i)**

 \bullet Current world average: m_7 = 1776.86 ± 0.12 MeV • Best in world: BES3 (threshold scan) m_{τ} = 1776.91 ± 0.12 (stat.) ^{+0.10}-0.13 (syst.) MeV \bullet Best at LEP: OPAL $m_r = 1775.1 \pm 1.6$ (stat.) \pm 1.0 (syst.) MeV ^q About factor 10 from world's best Phys.Lett. B492, 23 rone ^q Main result from endpoint of distribution OPAL. of pseudo-mass in τ \rightarrow 3π[±](nπ^o)ν_τ ^q Dominant systematics: 30 Uncertainty: ^v Momentum scale: 0.9 MeV \mathfrak{D} 1/35 of bin width \div Energy scale: 0.25 MeV (including also π^o modes) 10 θ ^v Dynamics of τ decay: 0.10 MeV 1.5 1.6 1.7 m^* [GeV] Uncertainty ^u Same method from Belle Entries/0.8MeV/c2 PRL 99, 011801 (2007) $400x$ ^q Main systematics Belle 3500 ^v Beam energy & tracking system calib.: 0.26 MeV \sim ^v Parameterisation of the spectrum edge: 0.18 MeV 2500 2000 m_r = 1776.61 ± 0.13 (stat.) ± 0.35 (syst.) MeV 1800 Uncertainty: 1000 half bin width 500 Pseudo-mass: $M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$ 173 1.74 1.75 1.76 1.78 1.79 11th FCC-ee Workshop, CERN 10/01/2019 Mogens Dam / NBI Copenhagen

Alberto Lusiani (SNS & INFN Pisa) – eeFACT2022, 12-16 September 2022 7 / 15

Tau Mass (from M.Dam, FCC-ee Workshop Jan 2019) **Tau Mass (ii)**

- ◆ Prospects for FCC-ee:
	- ^q 3 prong, 5 prongs, (perhaps even 7 prongs?)
	- **u** Statistics 10⁵ times OPAL: δ_{stat} = 0.004 MeV
	- ^q Systematics:
		- ^v At FCC-ee, *EBEAM* known to better than 0.1 MeV (~ 1 ppm) from resonant depolarisation
			- Negligible effect on m-
		- ^v Likely dominant experimental contribution comes from understanding of the mass scale
			- Use high stats e⁺e⁻ → u⁺u-sample to fix momentum scale. Extrapolate down to momenta typical for τ ➝ 3π.
			- Use D° → K π⁺ / K⁻ π⁺π⁻π and D⁺ → K π⁺π⁺ to fix mass scale (m_D known to 50 keV)
		- ^v Reduce uncertainty from parametrisation of spectrum edge by use of theoretical spectrum checked against high statistics data
		- * Cross checks using 5-prongs
	- q Suggested overall systematics: δ_{syst} = 0.1 MeV
		- ^v Could potentially touch current precision but probably no substantial improvement ?

Belle II

- ▶ The Belle II experiment at SuperKEKB: input to the European Particle Physics Strategy
- ▶ The Belle II Physics Book arXiv:1808.10567 [hep-ex]
- ▶ 50 ab $^{-1}$, improved detector w.r.t. Belle/BaBar, 50 \times Belle statistics, 9 $\cdot 10^{10}$ tau decays
- ▶ *B*-factories scored well on LFV, less well on precision measurements and spectral functions
- $■$ $\mathcal{B}(\tau \to \mu \gamma) < \sim 1·10^{-9}$ 90% CL $^+$ detailed study with BelleII sample, may be optimistic
- $B(\tau \to 3\mu)$ < 3.3·10⁻¹⁰ 90% CL extrap. from Belle assuming selection remains bkg-free
- \triangleright similar improvements on many other tau LFV modes
- $\Delta m_{\tau} = \pm 0.10 0.15$ MeV "very optimistically" (BESIII ± 0.17 MeV)
- \blacktriangleright my personal statistics-only-driven estimate $\Delta \tau$ = 0.026% (Belle 0.21%)
- **I** improvements w.r.t. today WA expected on $\mathcal{B}(\tau \to \ell \bar{\nu} \nu)$ and τ_{τ} but non-trivial & non-assured
- **Example 2** significant improvements on Cabibbo-suppressed BRs and spectral functions, but non-trivial
- \triangleright significant advances possible on many more measurements: Michel parameters, spectral functions, *CP V* , radiative decays, *g*−2, EDM. . .
- \triangleright Belle III: luminosity upgrade of Belle II would advance the reach of the LFV searches

HL-LHC and HE-LHC

\triangleright inputs to the European Particle Physics Strategy

▶ Opportunities in Flavour Physics at the HL-LHC and HE-LHC, arXiv:1812.07638 [hep-ph]

Super Charm-Tau Factories: SCT (BINP, Novosibirsk) and STCF/HIEPA (China)

- \triangleright SCT/Russia inputs to the European Particle Physics Strategy
- \triangleright STCF/China Haiping Peng, priv.comm., $\tau \to \mu \gamma$ study arXiv:1511.07228 [hep-ex]
- \blacktriangleright very similar projects, common description
- ► $E = 2 6$ or 2-7 GeV, $\mathcal{L} = 10^{35}$ cm⁻²s⁻¹, polarized e^- beam
- \blacktriangleright begin datataking 2029-2030
- ► max $\tau^+\tau^-$ cross-section at 4.25 GeV (3.5 nb), unknown how many years at that CM energy
	- I rescaled estimates to 2 years at 4.25 GeV (each year 2 $\cdot 10^7$ s and 7 $\cdot 10^9$ tau pairs)
- **I** ∆*m*_{*f*} from ±0.166 MeV (BESIII) to ±0.012 MeV [10× better systematic uncertainty]
- P *B*(*τ* → *μ*γ) < 5·10⁻⁹ 90% CL
	- ► extrapolated from 3 fb⁻¹ assuming search bkg free (my understanding)
	- \triangleright note that background is significantly less than at \overline{B} -factories energies
- $B(\tau \rightarrow 3\mu) < 3.5 {\cdot} 10^{-10}$ 90% CL sensitive also to all other $\mathcal{B}(\tau \rightarrow \ell_1 \ell_2 \ell_3)$
- \triangleright many LFV modes and other tau measurements possible, but little guiding past experience
	- \triangleright both projects actively investigating/planning many tau Physics measurements

CEPC at the *Z* peak

- \triangleright inputs to the European Particle Physics Strategy
- \triangleright The CEPC Conceptual Design Report, Vol II: Physics and Detector, arXiv:1811.10545 [hep-ex]
- \triangleright could be approved in 2022!
- \triangleright 1.10¹² *Z*, 3.10¹⁰ tau pairs (comparable to 4.5.10¹⁰ of Bellell)
- \triangleright expect tau LFV sensitivities similar to Bellell
	- ▶ but historic LEP LFV limits are much better than *B*-factories, for the same number of tau
- **►** stat. uncertainties $O(450) \times$ better than LEP \Rightarrow must estimate reasonable limiting systematics
- $\Delta B(\tau \to \ell \bar{\nu} \nu)$ ~ 0.02% (by improving 10× ALEPH systematics 0.2%)
- \triangleright expect $\Delta\tau$ _{*r*} ∼ 0.02% (by improving 10× w.r.t. Belle total uncertainty of 0.2%)
- \triangleright significant advances possible on about all measurements and LFV limits
- ▶ *Z* peak offers by far best conditions for about all tau Physics measurements

FCC-ee at the *Z* peak

- \triangleright inputs to the European Particle Physics Strategy
- ▶ Future Circular Collider, Vol. 1 : Physics opportunities (December 2018)
- \triangleright Dam 2019 (Tau 2018 proc.)
- \triangleright 8y preparation, 10y construction, 15y operation
- \triangleright *Z* peak phase delivers $5 \cdot 10^{12}$ *Z*s, $15 \cdot 10^{10}$ tau pairs (Bellell 4.5 $\cdot 10^{10}$)
- stat. uncertainties $\mathcal{O}(1000) \times$ better than LEP \Rightarrow must estimate reasonable limiting systematics
- \triangleright expect $\Delta \mathcal{B}(\tau \to \ell \bar{\nu} \nu) \sim 0.02\%$ (by improving 10× ALEPH systematics 0.2%)
- \triangleright expect $\Delta\tau$ _{*fi*} ∼ 0.01% (by improving 9× w.r.t. Belle detector alignment systematics of 0.1%)
- **►** expect Δ m_{τ} ~ 0.07 MeV (by calibrating on $m_{D^{+}}$, PDG 2018 WA ±0.12 MeV)
- $B(\tau \to \mu \gamma)$ < 2·10^{−9} 90% CL Monte Carlo study on 2% of full FCC-ee statistics
- $B(\tau \to 3\mu)$ < [1-0*.*1]·10⁻¹⁰ 90% CL guestimate
- \triangleright significant advances possible on about all measurements and LFV limits
- ▶ *Z* peak offers by far best conditions for about all tau Physics measurements

Precision of $|V_{\mu s}|$ from $\tau \to X_s \nu$ over time

Improvements

- B-factories measurements
- I last improvement obtained with extra hard work on existing B -factories data
- further progress expected with Belle II data and hard work...