Light composite scalars at FCC-ee and FCC-hh

L. Schwarze

November 22, 2022

Based on 2210.01826 in collaboration with Giacomo Cacciapaglia, Thomas Flacke, Manuel Kunkel and Werner Porod

- ► Composite Higgs
- Production of composite scalars
- ▶ Analysis of the model M5
- Generic feature: Broken U(1)

- \blacktriangleright UV theory of hyperquarks, for example $\psi,\,\chi$
- ▶ Breaking of global symmetry: $\mathcal{G} \to \mathcal{H} \supset G_{SM}$
- Induced by bilinear condensates $\langle \psi \psi \rangle \sim f_{\psi}^3 \Sigma_{0,\psi}$
- ▶ 3-hyperquark bound states with top-quark quantum numbers
- $\blacktriangleright \Rightarrow \text{Top partners}$
- ▶ Linear mixing with the top: Explain large Yukawa coupling

 \blacktriangleright \Rightarrow Partial Compositness

Composite Higgs - Composite Scalars

- ▶ A rich scalar sector emerges from the symmetry breaking
- \blacktriangleright Embed SM gauge groups into the broken group ${\mathcal H}$
- ► ⇒ yields gauge couplings of the form $\mathcal{L}_{kin} \supset \kappa_{ij}^{B_k}(\eta_i \partial_\mu \eta_j \partial_\mu \eta_i \eta_j) B_k^\mu$
- ▶ Gauging parts of $\mathcal{H} \subset \mathcal{G}$ explicitly breaks the global symmetry \Rightarrow Mass contribution
- ▶ Couplings give rise to production channels of the pNGBs (Drell-Yan)

Composite Higgs - Anomaly

- \blacktriangleright Each hyperquark multiplet contributes a U(1) to the global symmetry
- ▶ ⇒ broken, anomaly-free U(1) + anomalous U(1) generating an ABJ anomaly
- $\blacktriangleright \Rightarrow \text{ induces couplings } \mathcal{L}_{\text{anom.}} = \kappa_{\eta_i}^{A_j, A_k} \eta_i A_{j, \mu\nu} \tilde{A}_k^{\mu\nu}$

▶ Partial compositness → couplings to top partners induce couplings to (3rd generation) SM quarks

- ▶ Need to embed SM quarks into global group
- ▶ Embeddings form an incomplete representation of global group
- \blacktriangleright \Rightarrow Explicit breaking of global symmetry
- Couplings of the order $\kappa_t^\eta \sim m_t$, $\kappa_{tb}^\eta \sim m_t$, $\kappa_b^\eta \sim m_b$

Composite Higgs - Fermions

Couplings to fermions give rise to new production and decay channels

Consider purely EW scalars up to charge 2

 $\begin{array}{c} \bar{q}' \\ S^{-} \\ W^{+} \\ S^{++} \\ \overline{S}^{+(*)} \\ \overline{b} \\ W^{+} \end{array}$

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つく⊙

(2210.01826)

fermiophobic	$S^{++}S^{}$	$S^{\pm\pm}S^{\mp}$	S^+S^-	$S^{\pm}S^{0(\prime)}$	$S^{0}S^{0\prime}/S^{0\prime}S^{0}$
WWWW	$W^+W^+W^-W^-$	-	-	-	$W^+W^-W^+W^-$
$WWW\gamma$	-	$W^\pm W^\pm W^\mp \gamma$	-	$W^\pm \gamma W^+ W^-$	-
WWWZ	-	$W^{\pm}W^{\pm}W^{\mp}Z$	-	$W^{\pm}ZW^{+}W^{-}$	-
$WW\gamma\gamma$	-	-	$W^+\gamma W^-\gamma$	-	$W^+W^-\gamma\gamma$
$WWZ\gamma$	-	-	$W^\pm \gamma W^\mp Z$	-	$W^+W^-\gamma Z$
WWZZ	-	-	W^+ZW^-Z	-	W^+W^-ZZ
$W\gamma\gamma\gamma$	-	-	-	$W^{\pm}\gamma\gamma\gamma$	-
$WZ\gamma\gamma$	-	-	-	$W^{\pm}\{Z\gamma\}m{\gamma}$	-
$WZZ\gamma$	-	-	-	$W^{\pm}\{Z\gamma\}Z$	-
WZZZ	-	-	-	$W^{\pm}ZZZ$	-
$\gamma\gamma\gamma\gamma\gamma$	-	-	-	-	$\gamma\gamma\gamma\gamma\gamma$
$Z\gamma\gamma\gamma$	-	-	-	-	$Z\gamma\gamma\gamma$
$ZZ\gamma\gamma$	-	-	-	-	$Z{Z\gamma}\gamma$
$ZZZ\gamma$	-	-	-	-	$ZZZ\gamma$
ZZZZ	-	-	-	-	ZZZZ

fermiophilic	$S^{++}S^{}$	$S^{++}S^{-}$	S^+S^-	$S^+S^{0(\prime)}$	$S^0S^{0\prime}/S^{0\prime}S^0$
tttt	-	-	-	-	$t\overline{t}t\overline{t}$
tttb	-	-	-	$tar{b}tar{t}$	-
ttbb	-	-	$tar{b}bar{t}$	-	$tar{t}bar{b}$
tbbb	-	-	-	$t\overline{b}b\overline{b}$	-
bbbb	-	-	-	-	$b\overline{b}b\overline{b}$
Wttbb	-	$W^+ t ar b b ar t$	-	-	-
WWttbb	$W^+ t \overline{b} W^- b \overline{t}$	-	-	-	-

Bounds on various channels

We simulated channels using MadGraph5_aMC@NLO and determined bounds from analyses available in rivet/contur, MadAnalysis and CheckMATE.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

- ▶ 2101.11961: S^{++}/S^{--} , S^{++}/S^{-} direct search
- ▶ 1811.11028/2203.00480: $S^0/S^{0'}$, different kinematics
- ▶ di-Higgs production analyses mostly focus on masses of 125 GeV

Fermiophilic scenario

- ▶ 2106.09609: Search for R-Parity violating SUSY, Most dominant for multi-top final states
- 2101.01629, 1807.07447, 1908.03122, MS PAS SUS-19-006, 1704.07781: Various SUSY searches, Most dominant for multi-bottom final states

Fermiophobic scenario

- ▶ $WWW\gamma$: $Z\gamma$ production cross section measurement
- \blacktriangleright WWWW/WWWZ: Multi-lepton final states
- ▶ $W\gamma W\gamma$: Strongest bounds, search for gauge-mediated supersymmetry in final states containing photons and jets

- ▶ ...
- ▶ Full list in 2210.01826
- Numerical values of the limits are available at https://github.com/manuelkunkel/scalarbounds

Including full multiplets yields stronger bounds

- ► Example: Model M5 (1312.5330, 1610.06591)
- \blacktriangleright Gauge group: Sp(4)
- $\blacktriangleright 5 \times \psi \in \mathbf{A_2}$
- $\blacktriangleright \ 6 \times \chi \in \mathbf{F}$
- $\blacktriangleright \Rightarrow \text{Coset is } \frac{\text{SU}(6) \times \text{SU}(5) \times \text{U}(1)}{\text{Sp}(6) \times \text{SO}(5)}$
- $\blacktriangleright \operatorname{Sp}(6) \supset \operatorname{SU}(3)_C \times \operatorname{U}(1)_X$
- $\blacktriangleright \operatorname{SO}(5) \supset \operatorname{SU}(2)_L \times \operatorname{SU}(2)_R \supset \operatorname{SU}(2)_L \times \operatorname{U}(1)_Y$
- \blacktriangleright In addition, there is a U(1) giving rise to an ABJ anomaly

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

pNGBs of M5, additional to the Higgs

Coset	Custodial Group	SM Gauge Group	Particle Content	
$\mathrm{U}(1)$	-	-	a	
SII(5)/SO(5)	$\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$		$n + n_1 + n_2 + n_3$	
50(5)/50(5)	$({f 1},{f 1})+({f 3},{f 3})$	1' + 1 + 3 + 5	$\eta + \eta_1 + \eta_3 + \eta_5$	
SU(6)/Sp(6)	$SU(3)_c \times U(1)_X \qquad SU(3)_c$		$\Pi_{3} + \Pi_{\mathbf{\bar{3}}} + \Pi_{8}$	
50(0)/5p(0)	${f 3}_{-2x}+{f 3}_{-2x}$			

DY production cross section assuming equal masses at the LHC

- ▶ Investigate fermiophobic and fermiophilic scenarios since the exact branching ratios are not known
- ▶ The NGB potential contains enough freedom for all possible hierarchies between the multiplet masses
- ▶ In the following, we treat states within the same multiplet as mass-degenerate
- ▶ Mass parameters: m_1, m_3, m_5
- For simplicity, consider scenarios where only two multiplets are present (the third one may be considered as heavy)

Full model results - fermiophobic example

1802.03158 [Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector]

590

- 2

Full model results - fermiophilic examples

- ▶ Common for all CHMs: broken U(1) giving rise to pNGB a
- \blacktriangleright a is gauge singlet but has anomalous couplings
- ▶ In particular, $aZ\gamma$ vertex may exist
- \blacktriangleright a is expected to be light
- ▶ ⇒ Light composite scalar, can be produced in FCC-ee and can probe the composite sector of Composite Higgs models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Tera-Z portal to compositeness WZW [^]/^N (via ALPs) G.Cacciapaglia et al.

2104 11064

This process is always associated with a monochromatic photon.

No leading order coupling to Photons (WZW interaction is Zero!!)

> eq. SU(4)/SP(4), $SU(4) \times SU(4) / SU(4)$

WZW interaction to photons (like the pion) eq. SU(5)/SO(5), SU(6)/SO(6) <ロト < 回ト < 三ト < 三ト</p>

Phenomenology-Prompt Decays

Photo-philic G.Cacciapaglia et al. 2104.11064

Three isolated photons

 $BR(Z \to 3\gamma)_{\text{LEP}} < 2.2 \cdot 10^{-6}$

Discriminating variable: invariant mass

Photon ordering changes at inv. mass 50 GeV

> Bins above 80 GeV populated by fakes: hard to estimate!

> > ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶

æ

- ▶ Composite Higgs models come with composite scalar particles
- ▶ Electroweak pNGBs can have masses of a couple 100 GeV
- \blacktriangleright ALP *a* can be used to probe the composite sector
- ▶ FCC-ee may be used to probe neutral channels and FCC-hh for charged ones

	$G_{\rm HC}$	SM gauge group			global group		
	$\operatorname{Sp}(4)$	$\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$			$SU(5) \times SU(6) \times U(1)$		
$\psi_{1,2}$	A_2	1	2	1/2			
$\psi_{3,4}$	A_2	1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5}$
ψ_5	A_2	1	1	0			Ŭ
$\chi_{1,2,3}$	F	3	1	x	1	6	a
$\chi_{4,5,6}$	\mathbf{F}	$\overline{3}$	1	-x	I	0	q_{χ}

Cross sections of the doubly charged pair production at the HL-LHC and some proposed future colliders

・ロト ・ 理ト ・ ヨト ・ ヨー ・ のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(a) Bounds from individual channels

(b) Bounds from sum of multiphoton channels