The flavour anomalies:

the impact on future experiments

1st Joint FCC-France and Italy workshop, Lyon $$22^{\rm nd}$$ November 2022

Introduction

- Several anomalies in B physics semi-leptonic $b \to s$ and $b \to c$ channels,
- Been around for almost a decade; while central values haven't stayed constant, significance has not gone away !
- One of only signs of BSM physics at the moment, need to be taken into consideration in designing future experiments.
- In this talk I want to answer the following questions :
 - 1. What is the status of the anomalies?
 - 2. What are the experimental and theoretical prospects?
 - 3. What role could the FCC play ?

Introduction to the anomalies

Calculations in $b ightarrow s\ell\ell$

Wilson Coeff.	Operator	[Meril Reboud 2022]	
Photon penguin $C_7^{(\prime)}$	$\frac{e}{g^2}m_b(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}$,	/	<u> </u>
Gluon penguin $\mathcal{C}_8^{(\prime)}$	$\frac{1}{g_s} m_b(\bar{s}\sigma_{\mu\nu}T^a P_{R(L)}b)G^{\mu\nu}a,$	9,10,5,P	7.7"
EW penguin (V) $\mathcal{O}_9^{(\prime)}$	$\frac{e^2}{g^2}(\bar{s}\gamma_\mu P_{L(R)}b)(\bar{\mu}\gamma^\mu\mu)$,		
EW penguin (A) $\mathcal{O}_{10}^{(\prime)}$	$rac{e^{Z}}{g^{2}}(ar{s}\gamma_{\mu}P_{L(R)}b)(ar{\mu}\gamma^{\mu}\gamma_{5}\mu)$,		

- Write amplitude: $\mathcal{A}_{\mathcal{B}\to\mathcal{M}\ell^+\ell^-} = \langle \ell^+\ell^-\mathcal{M}|\mathcal{H}_{eff}|\mathcal{B}\rangle = \frac{4G_F}{\sqrt{2}}\lambda \sum_i \langle \ell^+\ell^-\mathcal{M}|C_i\mathcal{O}_i|\mathcal{B}\rangle.$ where $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}}\lambda_t \left(C_1\mathcal{O}_1^c + C_2\mathcal{O}_2^c + \sum_{i=3}^6 C_i\mathcal{O}_i + \sum_{i=7,8,9,10,P,S} (C_i\mathcal{O}_i + C_i'\mathcal{O}_i'),\right)$
- Cannot write $\mathcal{O}\sim j_\ell\,j_q,$ due to contributions from photonic and gluonic penguins and four quark operators
- Schematically $\mathcal{A}_{\mathcal{B} \to \mathcal{M}\ell^+\ell^-} \sim \mathcal{N}\left(C\mathcal{F}^V(q^2) + \frac{1}{q^2}\left(C\mathcal{F}^T(q^2) \mathcal{H}(q^2)\right)\right) \langle \ell^+\ell^- | j_\ell | 0 \rangle$,

Dominant uncertainty from $\mathcal{H}(q^2) \Rightarrow$ non-local hadronic matrix element of four-quark operators, $\mathcal{H}^{\mu}(q^2) \equiv i \int d^4 x e^{iqx} \langle \mathcal{M}(k) | T\{j^{\rm em}_{\mu}(x), (C_1 \mathcal{O}_1 + C_1 \mathcal{O}_2)(0)\} | \mathcal{B}(q+k) \rangle$ where $j^{\rm em}_{\mu} = \sum_q Q_q \bar{q} \gamma_{\mu} q$

[Meril Reboud 2022]

Branching ratios from C. Langenbruch, Implications 2022

• New results from Lattice QCD [HPQCD 2022] shown for $B^0 \to K^0$ and $B^+ \to K^+$

• Especially at low q^2 data lies consistently below theory (\sim 1-3 σ)

Angular observables

a.k.a. the infamous P'_5

In q^2 bins [4.0, 6.0] and [6.0, 8.0] GeV² local tensions of 2.5 and 2.9 σ , global analysis finds tension ~ 3.3σ [LHCb 2020], consistent with [Belle 2017, CMS 2018,ATLAS 2018]

- Recent LHCb measurement for B⁺ decay using Run 1+2 data [LHCb 2021], consistent with neutral channel. see also [CMS 2021]
- LHCb update coming soon, and unbinned analysis ongoing

Lepton Universality Ratios

Updates in 2022:

observable	tension	
R_{K} ,	3.1σ	
$R_{\kappa_{\epsilon}^{0}}$	1.5σ	
$R_{K^{*+}}$	1.4σ	

- LHCb working on unified R_K and R_{K^*} analysis, where a "deeper understanding of the LFU measurements" will apparently "be reflected in results"!
- R_{pK} , R_{ϕ} , and $R_{K\pi\pi}$... all ongoing!

Recent theory advances

- Non-resonant background for K^* , form factors for $B \to K\pi$ [Descotes-Genon et al 2019] (effect goes in wrong direction to explain the anomaly)
- Charm contribution, recent analysis shows cannot explain anomaly [Gubernari et al 2021, 2022]
- Form factors for alternative channels, e.g. baryons, see LQCD [Meinel et al 2021]
- Possible explanations for the deviation from the SM of R_K(*) in terms of QED corrections have been ruled out [Bordone et al 2016, Isidori et al 2020], for the branching ratios and angular observables it would be interesting to see extensions of [Beneke 2018] (for B_s → ℓ⁺ℓ⁻)

HFLAV latest results for

 $\overline{R_{D^{(*)}}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \mu \nu)}$

/

HFLAV latest results for

 $\overline{R_{D^{(*)}}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \mu \nu)}$

1.

Lepton Universality Ratios

- For ratios involving the charged current, $b \rightarrow c \ell \nu$, the SM prediction deviates significantly from unity due to the large τ mass.
- More dependence on form factors than neutral channel. Calculations in Lattice/sum rules/HQET. Latest theory predictions compared here (Bernlochner et al=BLPR, Bordone et al=BJvD, Gambino et al=GJS, Jaiswal et al=JNK).
- Perform fits of data to theory as function of q^2 ($\ell\nu$ momentum squared) using theoretically motivated parameterization, BGL preferred [Boyd et al 1996]
- *R_D* good agreement: Lattice QCD at non-zero recoil [HPQCD 2015, FNAL/MILC 2015]+data+HQET are consistent, tension~ 1.4 σ

[AB 2022]

Comparing the slope for R_{D^*}

Recent results

- For the R_{D*} result, agreement not perfect following 2017/2018 Belle results: 1) need more FF shape information 2) Prefer BGL to CLN parameterization as less assumptions about HQET corrections, or go to higher orders
- This was achieved: 1) recent results at non-zero recoil [FNAL/MILC 2021], 2) Calculation of HQET corrections@1/m²_c [Jung et al 2020]
- Test compatibility via plots of FF slopes [Jung 2022]: FNAL/MILC 2021, HQE@1/m²_c, Exp (BGL), JLQCD prel.
- While R₁(w) agrees, in R₂(w) there are deviations between FNAL/MILC 2021, previous FFs and experiment
- preliminary JLQCD results don't give decisive answer. Waiting for further Lattice results and further measurements!

What about the FCC? [Monteil 2021]

Anomalies will be further investigated at Belle 2 and high-lumi LHC, by the time FCC is built we will know if they are confirmed or not

- How does the FCC compare to Belle II and LHCb? [Monteil and Wilkinson 2021]
- Productions of *B*-mesons at FCC-ee are ~ 20 times more than those at Belle II, while the $B_s \sim 10^3$ more, plus highly boosted so reconstruction highly efficient [Lu and Liu 2020]

Attribute			$\Upsilon(4S)$	$pp Z^0$	
All hadron species				1 1	
High boost				she li LHC	V V
Enormous production cross-section \checkmark					
Negligible trigger losses			\checkmark	\checkmark	
Low backgrounds			\checkmark	\checkmark	
Initial energy constraint			✓	(√)	
Channel	Belle II	LHCb	$\operatorname{Giga-}Z$	Tera-Z	$10 \times \text{Tera-}Z$
B^0, \bar{B}^0	$5.3 imes10^{10}$	$\sim 6 imes 10^{13}$	$1.2 imes 10^8$	$1.2 imes 10^{11}$	$1.2 imes 10^{12}$
B^{\pm}	$5.6 imes10^{10}$	$\sim 6 imes 10^{13}$	$1.2 imes 10^8$	$1.2 imes 10^{11}$	$1.2 imes 10^{12}$
B_s, \bar{B}_s	5.7×10^8	$\sim 2 imes 10^{13}$	3.2×10^7	$3.2 imes 10^{10}$	$3.2 imes 10^{11}$
B_c^{\pm}	-	$\sim 4\times 10^{11}$	$2.2 imes 10^5$	$2.2 imes 10^8$	$2.2 imes 10^9$
$\Lambda_b, \bar{\Lambda}_b$	-	$\sim 2 imes 10^{13}$	$1.0 imes 10^7$	$1.0 imes 10^{10}$	$1.0 imes 10^{11}$

For the anomalies, the FCC-ee is unique in that:

- τ -modes are key to testing models explaining anomalies, and only experiment where the SM values can be reached is the FCC-ee, Exploratory work $b \rightarrow s \tau \tau$ promising, [Kamenik et al 2017, Lu and Liu 2020]
- LFV decay modes of b quarks are important to test BSM models if anomalies confirmed
- Possibility to study $B_c \rightarrow \tau \nu$ for the first time again exploratory work promising [Amhis et al 2021] (also measurement of V_{cb} by running at the WW threshold)

Summary

and Outlook

Anomalies in $b \rightarrow s$ and $b \rightarrow c$ transitions

- Anomalies in $b \to s\ell\ell$ still standing, waiting for update from LHCb on R_{K^*} Belle II will measure R_X to a few percent with 50 ab⁻¹
- For $b \to c \ell \nu$ looking forward to the updated unfolded spectrum from Belle II, Lattice collaborations to clarify situation with R_{D^*}
- Anomalies should be clarified by the LHC and Belle II

FCC prospects:

- High production rates, highly boosted, high reconstruction efficiency, all hadron species: very promising
- Sensitivity to decays with τ final states, e.g. $b \rightarrow s\tau\tau$, $B_c \rightarrow \tau\nu$, precise measurement of LFV decays of b hadrons and more
- High sensitivity to au decays, vibrant au physics program

Theory for the future:

- Lattice QCD for heavier baryons (Λ_b advanced state, B_c ongoing)
- Such precise measurements, QED effects will need to be studied more thoroughly

Thanks for listening!¹

¹and to Martin Jung, Stephane Monteil, Christoph Langenbruch, Francesco Polci, Lukas Allwicher, Meril Reboud for their slides

Effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4 \, G_F}{\sqrt{2}} \left(\lambda_t \, \mathcal{H}_{\text{eff}}^{(t)} + \lambda_u \, \mathcal{H}_{\text{eff}}^{(u)} \right) \tag{1}$$

where $\mathit{G_{F}}$ is the Fermi constant, $\lambda_{\mathit{q}} = \mathit{V_{qb}}\mathit{V_{qs}^{*}}$ and

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{(t)} &= C_1 \mathcal{O}_1^c + C_2 \mathcal{O}_2^c + \sum_{i=3}^6 C_i \mathcal{O}_i + \sum_{i=7,8,9,10,P,S} (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') \\ \mathcal{H}_{\text{eff}}^{(u)} &= C_1 (\mathcal{O}_1^c - \mathcal{O}_1^u) + C_2 (\mathcal{O}_2^c - \mathcal{O}_2^u) \,. \end{aligned}$$

The operators $\mathcal{O}_{i < 6}$ are given by the P_i given in [?], while the remaining ones are given by

$$\mathcal{O}_7 = \frac{e}{g^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}, \qquad \qquad \mathcal{O}_7' = \frac{e}{g^2} m_b (\bar{s}\sigma_{\mu\nu} P_L b) F^{\mu\nu}, \qquad (2)$$

$$\mathcal{O}_{8} = \frac{1}{g_{s}} m_{b} (\bar{s}\sigma_{\mu\nu} T^{a} P_{R} b) G^{\mu\nu a}, \qquad \qquad \mathcal{O}_{8}' = \frac{1}{g_{s}} m_{b} (\bar{s}\sigma_{\mu\nu} T^{a} P_{L} b) G^{\mu\nu a}, \qquad (3)$$

$$\mathcal{O}_9 = \frac{e^2}{g^2} (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu \mu), \qquad \qquad \mathcal{O}'_9 = \frac{e^2}{g^2} (\bar{s}\gamma_\mu P_R b) (\bar{\mu}\gamma^\mu \mu), \qquad (4)$$

$$\mathcal{O}_{10} = \frac{e^2}{g^2} (\bar{s}\gamma_{\mu} P_L b) (\bar{\mu}\gamma^{\mu}\gamma_5 \mu), \qquad \qquad \mathcal{O}'_{10} = \frac{e^2}{g^2} (\bar{s}\gamma_{\mu} P_R b) (\bar{\mu}\gamma^{\mu}\gamma_5 \mu), \qquad (5)$$

where g_s is the strong coupling constant, the left, right projectors are defined via $P_{L,R} = (1 \mp \gamma_5)/2$ and m_b is b

/7

Global Analyses

Aoife Bharucha

An example from [Gubernari et al 2022]

b
ightarrow s au au [Kamenik et al 2017, Lu and Liu 2020]

- FCC-ee can access the SM values $(10^{-7} 10^{-6})$ of $B \rightarrow K^* \tau \tau$, $B^+ \rightarrow K^+ \tau \tau$, $B_s \rightarrow \phi \tau \tau$ and $B_s \rightarrow \tau \tau$, [Lu and Liu 2020]
- Could pinpoint possible BSM contributions to C_9 and C_{10} for τ leptons.
- Access to τ polarization, theoretically clean observables suggested in the form of singleand double- τ polarization in [Kamenik et al 2017]

$\tau\text{-lepton}$ decay sensitivities $_{\text{[Dam 2018]}}$

- Z factory very well suited for precision τ-physics measurements (LEP measurements still stand unchallenged. despite B factories), 5 orders of magnitude more events at FCC-ee than LEP
- More than one order of magnitude improvements are expected in the lifetime and branching fraction measurements. This will enable tests of lepton universality down to a precision at the 0.01% level. (to improve further need better precision on τ mass. at e.g. next generation τ factory)
- In general about an order of magnitude improvements can be ultimately expected from the full LHC samples for LFV Z decays.
- Charged lepton flavour violation in τ to be further improved at Belle II, FCC-ee will perform competitive measurements

Decay	Present bound	FCC-ee sensitivity
$Z \rightarrow \mu e$	$0.75 imes10^{-6}$	$10^{-10} - 10^{-8}$
$Z \rightarrow \tau \mu$	$12 imes 10^{-6}$	10^{-9}
$\mathbf{Z} \to \tau \mathbf{e}$	$9.8 imes 10^{-6}$	10^{-9}
$\tau \rightarrow \mu \gamma$	4.4×10^{-8}	$2 imes 10^{-9}$
$\tau \to 3 \mu$	$2.1 imes 10^{-8}$	10^{-10}

