https://sites.google.com/view/mark-d-goodsell

Status and Prospects for Supersymmetry at the FCC

Mark Goodsell

Overview

- Status of SUSY going into run 3
- Theory perspective on SUSY at the FCC
- Prospects

Isn't SUSY already dead?

- Colourful sparticles did not appear immediately below a TeV
- Limits on colourful particles in simple MSSM scenarios around 2 TeV (BUT)
- No DM particle found (yet) either

"I suppose I'll be the one to mention the elephant in the room."

BUT:

- No colourful particles actually sits well with Higgs mass, flavour ...
- Direct searches for electroweakinos actually have poor reach
- Still best-motivated BSM framework

Even minimal scenarios could still be hiding in plain sight!

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2022

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

	Model	Signature	$\int \mathcal{L} dt [\mathbf{f}\mathbf{b}^{-1}]$	Mass limit	Reference
Inclusive Searches	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} & E_T^{ m miss} \\ { m mono-jet} & 1-3 \ { m jets} & E_T^{ m miss} \end{array}$	s 139 s 139	q̃ [1.0] 1.85 m(λ ² ₁)<400 GeV q̃ [8 x Degen.] 0.9 m(λ ² ₁)<56 GeV	2010.14293 2102.10874
	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\tilde{q}\tilde{\chi}^0_1$	$0 e, \mu$ 2-6 jets E_T^{miss}	^s 139	ĝ 2.3 m(t ⁰ ₁)=0 GeV ĝ Forbidden 1.15-1.95 m(t ⁰ ₁)=1000 GeV	2010.14293 2010.14293
	$\begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow q \tilde{q} W \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow q \tilde{q} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \end{array}$	$\begin{array}{lll} 1 \ e, \mu & 2\text{-}6 \ \text{jets} \\ ee, \mu \mu & 2 \ \text{jets} & E_T^{\text{miss}} \\ 0 \ e, \mu & 7\text{-}11 \ \text{jets} & E_T^{\text{miss}} \\ \text{SS} \ e, \mu & 6 \ \text{jets} \end{array}$	139 * 139 * 139 139 139	ğ 2.2 m(k ²)<600 GeV ğ 2.2 m(k ²)<700 GeV	2101.01629 CERN-EP-2022-014 2008.06032 1909.08457
	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1} \ e,\mu & \text{3} \ b & E_T^{\text{miss}} \\ \text{SS} \ e,\mu & \text{6 jets} \end{array}$	^s 79.8 139	ĝ 2.25 m(ξ ⁰)<200 GeV ĝ 1.25 m(ξ)+m(ξ ¹)=300 GeV	ATLAS-CONF-2018-041 1909.08457
3^{rd} gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$	$0 e, \mu$ $2 b E_T^{\text{miss}}$	^s 139	$ \begin{array}{c c} \bar{b}_1 & 1.255 & m_i \bar{k}_1^{(0)} < 400 {\rm GeV} \\ \hline \bar{b}_1 & 0.68 & 10 {\rm GeV} < \Delta m_i \bar{b}_i \bar{\lambda}_1^{(1)} < 20 {\rm GeV} \end{array} $	2101.12527 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & E_T^{\text{miss}} \\ 2 \ \tau & 2 \ b & E_T^{\text{miss}} \end{array}$	^s 139 ^s 139	$ \begin{array}{c c} \hline b_1 & \hline 0.23\text{-}1.35 \\ \hline b_1 & \hline 0.13\text{-}0.85 \\ \end{array} \\ \begin{array}{c c} \Delta m(\tilde{v}_2^0,\tilde{v}_1^0) = 130 \ \text{GeV}, m(\tilde{v}_1^0) = 100 \ \text{GeV} \\ \Delta m(\tilde{v}_2^0,\tilde{v}_1^0) = 130 \ \text{GeV}, m(\tilde{v}_1^0) = 0 \ \text{GeV} \\ \end{array} $	1908.03122 2103.08189
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet E_T^{miss} 1 e, μ 3 jets/1 b E_T^{miss}	s 139 s 139	Ĩı 1.25 m(l ⁰)=1 GeV Ĩι Forbidden 0.65 m(l ⁰)=500 GeV	2004.14060,2012.03799 2012.03799
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0 $	1-2 τ 2 jets/1 b E_T^{miss} 0 e, μ 2 c E_T^{miss} 0 e, μ mono-iet E_T^{miss}	^s 139 ^s 36.1 ^s 139	Forbidden 1.4 m(1)=800 GeV č 0.85 m(1)=60 GeV T 0.55 m(1)=6 GeV	2108.07665 1805.01649 2102.10874
	$ \begin{split} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_2^0, \tilde{\chi}_2^0 {\rightarrow} Z/h \tilde{\chi}_1^0 \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 {\rightarrow} \tilde{t}_1 + Z \end{split} $	$1-2 e, \mu \qquad 1-4 b \qquad E_T^{\text{miss}}$ $3 e, \mu \qquad 1 b \qquad E_T^{\text{miss}}$	s 139 s 139	τ 0.067-1.18 m(t) second τ̄2 Forbidden 0.86 m(t)=800 GeV second second <td>2006.05880 2006.05880</td>	2006.05880 2006.05880
EW direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{rl} \text{Multiple } \ell/\text{jets} & E_{T\text{iss}}^{\text{miss}} \\ ee, \mu\mu & \geq 1 \text{ jet} & E_{T}^{\text{miss}} \end{array}$	s 139 s 139	$\tilde{\chi}_{1}^{2}/\tilde{\chi}_{2}^{0}$ 0.96 $m(\tilde{\chi}_{1}^{0})=0, winc-bino$ $\tilde{\chi}_{1}^{2}/\tilde{\chi}_{2}^{0}$ 0.205 $m(\tilde{\chi}_{1}^{0})=GeV, winc-bino$	2106.01676, 2108.07586 1911.12606
	$ \begin{split} \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{\dagger} & \text{via } WW \\ \tilde{\chi}_1^{\dagger} \tilde{\chi}_2^{0} & \text{via } Wh \\ \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{0} & \text{via } \tilde{\ell}_L/\tilde{\nu} \\ \tilde{\tau}_1^{\dagger}, \tilde{\tau} \to \tau \tilde{\nu}_1^{0} \\ \tilde{\tau}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_1^{0} \end{split} $	$\begin{array}{ccc} 2 \ e, \mu & \mathcal{E}_T^{\mathrm{min}} \\ \text{Multiple } \ell/\mathrm{jets} & \mathcal{E}_T^{\mathrm{min}} \\ 2 \ e, \mu & \mathcal{E}_T^{\mathrm{min}} \\ 2 \ \tau & \mathcal{E}_T^{\mathrm{min}} \\ 2 \ e, \mu & 0 \ \mathrm{jets} & \mathcal{E}_T^{\mathrm{min}} \\ e \ e, \mu \mu & \geq 1 \ \mathrm{jet} & \mathcal{E}_T^{\mathrm{min}} \end{array}$	^s 139 ^s 139 ^s 139 ^s 139 ^s 139 ^s 139 ^s 139	$\tilde{\chi}_1^+$ 0.42 m($\tilde{\ell}_1^0$)=0, wino-bino χ_1^+/χ_2^0 1.06 m($\tilde{\ell}_1^0$)=70 GeV, wino-bino χ_1^+/χ_2^0 1.0 m($\tilde{\ell}_2^0$)=0.50(χ_1^0)m($\tilde{\ell}_2^0$) $\tilde{\tau}$ $\tilde{\ell}_1$ 1.0 m($\tilde{\ell}_2^0$)=0.50(χ_1^0)m($\tilde{\ell}_1^0$) $\tilde{\tau}$ $\tilde{\ell}_1$ 0.16-0.3 0.12-0.39 m($\tilde{\ell}_1^0$)=0 $\tilde{\ell}$ 0.256 0.7 m($\tilde{\ell}_1^0$)=10 GeV	1908.08215 2004.10894, 2108.07586 1908.08215 1911.06660 1908.08215 1911.12606
	ĤĤ, Ĥ→hĜ/ZĜ	$\begin{array}{lll} 0 \ e, \mu & \geq 3 \ b & E_T^{\rm miss} \\ 4 \ e, \mu & 0 \ {\rm jets} & E_T^{\rm miss} \\ 0 \ e, \mu & \geq 2 \ {\rm large} \ {\rm jets} & E_T^{\rm miss} \end{array}$	^s 36.1 ^s 139 ^s 139	\tilde{H} 0.13-0.23 0.29-0.88 $BR(\tilde{k}_1^0 \to k\tilde{G})=1$ \tilde{H} 0.55 $BR(\tilde{k}_1^0 \to Z\tilde{G})=1$ \tilde{H} 0.45-0.93 $BR(\tilde{k}_1^0 \to Z\tilde{G})=1$	1806.04030 2103.11684 2108.07586
Long-lived particles	Direct $\tilde{\chi}_1^* \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^{\pm}$	Disapp. trk 1 jet E_T^{miss}	^s 139	X [±] 0.66 Pure Wino X [±] 0.21 Pure higgsino	2201.02472 2201.02472
	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$	pixel dE/dx E_T^{miss} pixel dE/dx E_T^{miss} Displ. lep E_T^{miss} pixel dE/dx E_T^{miss}	5 139 5 139 5 139 5 139 5 139	$ \begin{array}{c c} \bar{g} & 2.05 \\ \bar{g} & [r(\bar{g}) = 10 \text{ ns}] & 2.2 & m(\bar{k}_1^0) = 100 \text{ GeV} \\ \bar{e}, \bar{\mu} & 0.7 & \tau(\bar{t}) = 0.1 \text{ ns} \\ \bar{\tau} & 0.34 & \tau(\bar{t}) = 0.1 \text{ ns} \\ \bar{\tau} & 0.36 & \tau(\bar{t}) = 10 \text{ ns} \end{array} $	CERN-EP-2022-029 CERN-EP-2022-029 2011.07812 2011.07812 CERN-EP-2022-029
РV	$ \begin{split} \tilde{x}_{1}^{+} \tilde{x}_{1}^{+} / \tilde{x}_{1}^{0} / \tilde{x}_{1}^{0} \rightarrow \mathcal{Z}\ell \rightarrow \ell\ell\ell\ell \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{+} / \tilde{x}_{2}^{0} \rightarrow WW/\mathcal{Z}\ell\ell\ell\ell\nu\nu \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow qq \tilde{x}_{1}^{0} , \tilde{x}_{1}^{0} \rightarrow qq q \\ \tilde{g}, \tilde{g}, \tilde{g} \rightarrow qq \tilde{x}_{1}^{0} , \tilde{x}_{1}^{0} \rightarrow bs \\ \tilde{n}, \tilde{n}, \tilde{n} \rightarrow \tilde{v}^{+} , \tilde{x}_{1}^{+} \rightarrow bbs \\ \tilde{n}, \tilde{n}, \tilde{n} \rightarrow \tilde{v}^{+} , \tilde{x}_{1}^{+} \rightarrow bbs \\ \tilde{n}, \tilde{n}, \tilde{n}, \tilde{n} \rightarrow q\ell \\ \tilde{x}_{1}^{+} / \tilde{x}_{2}^{0} / \tilde{x}_{1}^{0} , \tilde{x}_{1,2}^{0} \rightarrow tbs, \tilde{x}_{1}^{+} \rightarrow bbs \end{split}$	$\begin{array}{cccc} 3 \ e, \mu & & \\ 4 \ e, \mu & 0 \ \text{jets} & \ E_T^{\text{miss}} & \\ & & 4 \ \text{-}5 \ \text{large jets} & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & 2 \ \text{lot} & \\ & & & 2 \ \text{lot} & \\ & & & 2 \ \text{lot} & \\ & & & \\$	139 36.1 36.1 139 36.1 139 36.7 36.1 136 139	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2011.10543 2103.11684 1804.03568 ATLAS-CONF-2018-003 2010.01015 1710.07171 1710.05544 2003.11956 2106.09609
¹ Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]					

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

CMS (preliminary)

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

> Limits on stops/sbottoms at best about 1300 GeV, but model dependent and holes remain

1st generation squarks excluded below 1250 GeV or even beyond 2 TeV depending on assumptions

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise The quantities ΔM and z represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise. These limits up to 800 GeV are for wino-like charginos:

- Early LHC searches were for promptly decaying particles, LLPs have gained a lot of ground recently
- Huge number of BSM searches from runs 1 and 2 applicable to SUSY
- ... but SUSY is more a framework than one model (even the MSSM can have hugely varied pheno).
- Need to test a given model against latest data, but this is far from automatic.
- HiggsSignals/HiggsBounds and now HiggsTools do a good job for the Higgs-like searches
- Various subsets of analyses have been reinterpreted in codes can then be applied to different models with same signature
- Main frameworks are MadAnalysis (MA5), CheckMATE and ColliderBit (part of GAMBIT); SModelS uses a different fast approach.
- About 40 13 TeV analyses have been done for MA5; only 5 of these are full Run 2 datasets relevant for SUSY.

Definitive statements about current limits are not possible; even checking a given model point is still not automatic for SUSY Heavy SUSY/split SUSY/minimal DM are classic examples which may be hiding under our noses

Why SUSY at the FCC?

- Is apparent gauge coupling unification just a cruel joke of nature?
- SUSY reduces the Hierarchy problem to the Little Hierarchy problem
- It also allows us to address the cosmological constant problem
- It provides dark matter candidates and can readily address baryogenesis
- It seems to be necessary for string theory \rightarrow quantum gravity
- A 125 GeV Higgs implies somewhat heavy colourful superpartners
- Flavour physics constraints indirectly imply heavy colourful states except for the B anomalies!
- For a WIMP neutralino DM candidate, a pure Wino should have mass of ~ 2.7 TeV, and a Higgsino around a TeV: \sim

$$\Omega h^2(\text{wino}) \sim 0.11 \left(\frac{m}{2.7 \,\text{TeV}}\right)^2 \qquad \Omega h^2(\text{higgsino}) \sim 0.1 \left(\frac{m}{\text{TeV}}\right)^2$$

• The heavier the colourful states, if we want a wimp DM candidate we cannot have arbitrarily heavy electroweak states: they should be in reach of the FCC!

Taken from the website of the code MR: http://apik.github.io/mr/

better! Predictions for the Higgs mass in different SUSY scenarios:

But we can do

The Higgs mass can be used to put an upper limit on the SUSY scale!

OR: the Higgs mass is exactly in the range that SUSY predicts ...

Precision computations of the MSSM Higgs mass show, for moderate to high tan β , stops should be within reach of the FCC:

Leads to a reasonable set of hypotheses:

- Worst case scenario is heavy SUSY with non-WIMP DM, and **no** gauge coupling unification
- Split SUSY (all scalars heavy except the Higgs) allows WIMP DM, but the Higgs mass + gauge coupling unification favour a mini-split of masses up to 100 TeV
- SUSY could easily be lurking in plain sight, or with colourful states just above the LHC reach
- Non-minimal SUSY scenarios (beyond the MSSM) may be even lighter and salvage something of naturalness
- Optimistic picture is made more likely by anomalies (W mass, g-2 etc)

FCC Projections for SUSY searches

See Physics at a 100 TeV pp collider: beyond the Standard Model phenomena and FCC Physics Opportunities : Future Circular Collider Conceptual Design Report Volume 1

Conclusions

- Search strategies for the FCC seem to mimic LHC ones: monojet, pair production, disappearing tracks
- New searches are being developed for run 3 (displaced vertices, machine learning) which might also help FCC strategies ...
- ... I didn't find much activity on this recently
- Also tools for projections for the FCC are needed! (notably crosssection calculators exist, key4HEP is a very encouraging development – need more automation for theorists too!)