

Dark Matter: status and prospects at FCC

Dario Buttazzo

FCC France & Italy Workshop – Lyon, 22.11.2022

Motivation

- Dark Matter *exists*: the only direct evidence of physics beyond the Standard Model so far!
- One of the fundamental problems that the next large collider should be able to address
- Its fundamental nature is completely unknown: can span tens of orders of magnitude in mass and coupling
- The only measured
 quantity is the
 cosmological abundance Ω_{DM} ~ 0.26

Motivation

The case for WIMPs

- WIMP miracle: offers at the same time a simple explanation for the observed Dark Matter abundance ($\Omega_{DM} \sim 0.26$) and a connection to naturalness of electroweak scale.
- + Production in early Universe: thermal freeze-out of $2 \rightarrow 2$ scatterings

+ For each value of the DM-SM coupling g∗ DM mass is predicted.

$$\blacksquare g_* \sim g_{EW} \Rightarrow M_{DM} \sim TeV$$

Ideal target for colliders!

Consider generic EW multiplet: interacts w/ SM through W, Z

DM is the neutral component $\chi_n = (\dots, \chi^-, \chi^0, \chi^+, \dots)$

"Minimal Dark Matter": Cirelli, Fornengo, Strumia 2005

- DM needs to be stable
- + Strong bounds from Direct Detection: No Z coupling @ tree-level
 - Real multiplet: Y = 0, n odd
 - Complex multiplet: Y ≠ 0, (mass splittings from higher-dimensional operators needed)
- Single parameter sets the DM abundance: mass M_{DM}

Which WIMP?

+ Consider generic EW multiplet: interacts w/ SM through W, Z

- ... is inaccurate!
- Sommerfeld enhancement
- Bound states formation

Large non-perturbative, non-relativistic effects

Thermal freeze-out masses

(and similar for scalars)

	EW n-plet	Mass [TeV]
Majorana fermion	30	2.86
	5 ₀	13.6
	70	48.8
	9 ₀	113
	11 ₀	202
	13 ₀	324.6
Dirac fermion	21/2	1.08
	3 1	2.85
	4 _{1/2}	4.8
	51	9.9
	61/2	31.8
	81/2	82
	101/2	158
	12 _{1/2}	253

Thermal freeze-out masses

Bottaro, DB, Costa, Franceschini, Panci, Redigolo, Vittorio 2107.09688, 2205.04486 10⁻⁴⁴, 11_F 11_S 9_{*F*} 9_{*S*} 10-45 . (20 ton) KENONNT $\sigma_{\rm SI} \ [{
m cm}^2]$ (15.3 ton year). 10-46 5_F 5_S Neutrino Floor Br DARWIN (200 ton Veal kton Year 10^{-47} 20 50 200 10 100 500 2 5 M_{χ} [TeV] Direct Detection challenging ...

	EW n-plet	Mass [TeV]
Majorana fermion	3 0	2.86
	5 ₀	13.6
	7 ₀	48.8
	9 0	113
	11 ₀	202
	13 ₀	324.6
Dirac fermion	21/2	1.08
	3 ₁	2.85
	4 _{1/2}	4.8
	51	9.9
	61/2	31.8
	81/2	82
	10 1/2	158
	12 1/2	253

Thermal freeze-out masses

Electroweak triplet: missing energy searches

$$\mathscr{L} = \frac{1}{2} \bar{\chi} \left(i D_{\mu} \gamma^{\mu} - M_{\chi} \right) \chi, \qquad \chi = (\chi^{-}, \chi^{0}, \chi^{+}) \sim \mathbf{3}$$

+ 2 \rightarrow 2 production of invisible χ pair + event tag

- + Main background from $Z \rightarrow$ neutrinos
- Requires good control of systematics

Thermal freeze-out mass: 2.86 TeV X

Electroweak triplet: disappearing tracks

$$\mathscr{L} = \frac{1}{2} \bar{\chi} \left(i D_{\mu} \gamma^{\mu} - M_{\chi} \right) \chi, \qquad \chi = (\chi^{-}, \chi^{0}, \chi^{+}) \sim \mathbf{3}$$

- + 2 \rightarrow 2 production of invisible χ pair + event tag
- + Can look for the tracks of charged χ^+ decaying to χ^0 DM:

 Real WIMPS: lifetime is fixed by EW interactions

$$c\tau \approx 50 \,\mathrm{cm}/(n^2 - 1)$$

Thermal freeze-out mass: 2.86 TeV 🗸

Cirelli, Sala, Taoso 1407.7058

Electroweak triplet @ FCC-hh

Cirelli, Sala, Taoso 1407.7058 FCC Physics Opportunities

Electroweak triplet @ FCC-hh

Other EW multiplets

- Doublet (Higgsino) and triplet (Wino) fully probed at FCC-hh
 - Results strongly depend on the detector layout!

Terashi, Sawada, Saito, Asai (2018)

- Larger EW multiplets:
 - Larger cross-section due to big EW charges
 - Solution Much larger thermal masses, $M_{DM} \sim n^{5/2}$
 - Shorter lifetime of charged components, disappearing tracks less effective

$n \ge 5$ not testable at FCC

Other EW multiplets

- Doublet (Higgsino) and triplet (Wino) fully probed at FCC-hh
 - Results strongly depend on the detector layout!

Terashi, Sawada, Saito, Asai (2018)

- Larger EW multiplets:
 - Contraction Larger cross-section due to big EW charges
 - Much larger thermal masses, $M_{DM} \sim n^{5/2}$
 - Shorter lifetime of charged components, disappearing tracks less effective

 $n \ge 5$ not testable at FCC Signals in Indirect Detection!

Indirect effects at colliders

All EW multiplets give universal contributions to high-energy 2 → 2 fermion scattering
 (W, Y parameters)
 Di Luzio, Gröber, Panico 1810.10993

Indirect effects at colliders

- Complex multiplets need mass splittings from higher dim. operators
 - To make neutral component stable:
 - To suppress Z-induced scattering (DD):
- $\left(\bar{\chi} T^a \chi \right) \left(H^{\dagger} \sigma^a H \right)$ $\left(\bar{\chi} (T^a)^{2Y} \chi^c \right) \left(H^{\dagger c} \sigma^a H \right)^{2Y}$

Contribution to S, T parameters

$$\hat{S} \approx 10^{-5} \times \left(\frac{1 \text{ TeV}}{M_{\text{DM}}}\right) \left(\frac{\delta M}{10 \text{ GeV}}\right) n^3$$

 $\hat{T} \approx 10^{-5} \times \left(\frac{\delta M}{10 \text{ GeV}}\right)^2 n^3$

Bottaro, DB, Costa, Franceschini, Panci, Redigolo, Vittorio 2205.04486 Di Luzio, Gröber, Kamenik, Nardecchia 1505.00359

+ FCC-ee sensitivity: $\hat{S}, \hat{T} \leq \text{few} \times 10^{-5}$

could probe larger EW multiplets

Singlet scalar coupled through Higgs portal:
 one of the simplest thermal DM scenarios beyond EW interactions

Higgs portal

Masses below few TeV strongly constrained by Direct Detection

E. Salvioni @ Higgs2022 Good example of the "WIMP vs direct detection" tension

Higgs portal

+ Higgs portal to a Dark Sector: decouple freeze-out and direct detection

- freeze-out is controlled by a coupling g_* in the dark sector
- portal coupling $\lambda |H|^2 |\phi|^2$ can be made small

Initarity: if $g \sim 4\pi$, $m_{DM} \sim 100 \text{ TeV}$

• Dark Matter + dark gauge field

$$\mathscr{L} = -\frac{1}{4} \mathscr{F}^{a}_{\mu\nu} \mathscr{F}^{a}_{\mu\nu} + |D_{\mu}\phi|^{2} - m_{\phi}^{2}|\phi|^{2} - \lambda \phi^{2}(H^{\dagger}H)$$
• Majorana fermion + singlet scalar

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu}\phi)^{2} - \frac{m_{\phi}^{2}}{2} \phi^{2} + \bar{\chi}(i\partial - m_{\chi})\chi - g_{\chi}\phi\chi\chi - \lambda \phi^{2}(H^{\dagger}H)$$

Composite Dark Matter

- + If dark group confines, Dark Matter is bound state of strong "dark force" at $\Lambda \sim \text{few} \times (1 - 100 \text{ TeV})$
- + Stable thanks to accidental "dark baryon number"

constituents can be fermions

Strassler, Zurek 2006 Antipitin, Redi, Strumia, Vigiani 2015 ... many more...

or scalars

Hambye 2008 DB, Di Luzio, Landini, Strumia, Teresi 2019

★ Thermal mass ~ few × 100 TeV: not directly testable at colliders

Scalar singlets

+ Can test the portal interaction with the singlet sector

$$\begin{aligned} \mathscr{L}_{\phi} &= -\frac{1}{2}m_{\phi}^{2}\phi^{2} - V(\phi) - \mu\phi H^{\dagger}H - \frac{\lambda}{2}\phi^{2}H^{\dagger}H \\ &\text{induces mixing between} \\ &\text{Higgs and scalar singlet} \\ (\phi \to -\phi \text{ symmetry is not exact}) \end{aligned}$$

- φ can be e.g. Goldstone, or glueball
 of dark gauge interactions...
- + ϕ can mediate DM freeze-out if $M_{DM} > M_{\phi}$

$$\mathscr{L}_{\rm DM} = y_{\chi} \phi \chi \chi$$

Scalar singlets @ FCC

+ Two complementary ways to look for the singlet at colliders:

Higgs signal strengths

Light singlets

- + If singlet is light, it can be produced in Higgs decays, indep. of mixing
- + Light scalar: mostly hadronic decays, long lifetime
 - dedicated triggers and searches for light particles

Light singlets: invisible Higgs

- + In the zero-mixing limit the singlet is invisible
 - BR(h → inv) < few × 10⁻³
 (missing mass @ FCC-ee)
 - BR(h → inv) < few × 10⁻⁴
 from Higgs p_T distribution
 in VBF or ttH @ FCC-hh

 No Higgs-singlet mixing: singlet is stable, can be identified with DM stronger than Direct Detection prospects for low mass DM

Derivative Higgs portal

A viable alternative:

 $g^2_{\rm DM-SM}(E)$

$$\mathcal{L} \supset \frac{1}{2f^2} \partial_{\mu}(\phi^2) \partial^{\mu}(H^{\dagger}H)$$

scattering $q^2 \sim m_{\rm DM}^2 v_{\rm DM}^2$ $v_{\rm DM} \sim 10^{-3}$

For the <u>derivative Higgs portal</u>, direct detection is automatically suppressed

Ruhdorfer, Salvioni, Weiler 1910.04170

E. Salvioni @ Higgs2022

Derivative Higgs portal

Searches for motivated DM candidates are difficult (EW states, singlets...)

Many viable models... Not everything can be probed at FCC.

High energy + precision: excellent prospects in many interesting cases.

Complementary information will come from ID and DD in the coming years