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In this talk

A theoretical motivation

* The Standard model Higgs and why might it be
composite?
 Composite Higgs models (BSM) predict the existence of

a
* How we might
* |In order to search, we will define 12 models

(fundamental fermions)
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Analysis outline

* Targeted low mass search for BSM physics:
 Consider m, € [10,60] GeV:

deficiency of (LHC) searches thus far
* Possible search avenue at lepton colliders (FCC-eeg)
with low c.m. + high integrated luminosity = possibility

for detection of weakly interacting particles

* Machine learning using boosted decision trees
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Theoretical motivation

The Standard Model is an

effective theory: Aqy, N
H__ B H __H \ ,
Yt Yt aw aw ]_{ i~ - — {_]
A

Unstable due to quantum
corrections to the Higgs
mass at high scales

Composite models remove this tension:
quadratic divergences allowed only up to
some compositeness scale

Finite size effects screen quadratic growth
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 Composite Higgs models: high scale fundamental
gauge dynamics + new strong sector

* Higgsis a

* If the Higgs is composite, it’s hard to detect that from direct
measurements, but..

* |t will be accompanied by light states arising from same dynamics

* These light states may be the first signs of compositeness!

@ @ “Same” idea as QCD!
> 7% X

(new fermions take the
a,
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A quick interlude: symmetry groups

The understanding of symmetries is crucial in both SM and CH models

* Whenever there is a symmetry of a physical

system, we talk about a group

* Symmetries leave our system unchanged

* The SM is governed by the symmetry groups
SUB)x SUR2) x U(1)
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 Many BSM theories will go to larger
‘ + symmetry
symmetry groups

* [n composite Higgs theories, there is

symmetry broken by
fermions condensing

some larger symmetry group which is
spontaneously broken to produce our ‘ ‘ ‘
Higgs (and other Goldstones)
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 Many BSM theories will go to larger
‘ + symmetry
symmetry groups

* In composite Higgs theories, there is

symmetry broken by
fermions condensing

some larger symmetry group which is
spontaneously broken to produce our ‘ ' ‘
Higgs (and other Goldstones)

e Extend the SM
¢ Introduce strongly coupled gauge fermion sector

e Avoid fundamental scalars (no SO(5)/SO(4)!)
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pNGB Higgs

Based on a confining HC gauge group, with fundamental fermions in
different irreps. A global (flavour) symmetry of the fermions is broken,
leading to the production of the Higgs.

Goldstone’s theorem: pNGB produced in the breaking

G- H

when G was initially explicitly broken by some small amount.

A%

v

» Explicit breaking of the global sector by, for example, bare masses for the hyperquarks, gives mass to

NGB which becomes pNGB

Models of Composite Higgs at the FCC
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* A given model has a hypercolour

Energy .
\ . gauge group (unbroken), and v, y in
. two different irreps of the
Free fermions hypercolour group
~1TeV | """ """ 7T TT T ‘\
Bound states . ~e Global (flavour) symmetries of vy, ¥
are broken on the order of 1 TeV
h,.n .
* Also broken (by the same
246 GeV | - mechanism) is a ubiquitous non-
Usual EWSB :

anomalous U(1) symmetry
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* We have to make choices for these higher dimensional
symmetries

* We will employ a set of 12 models (M1-M12) spanning a
variety of HC and flavour groups

* Varying group structures

e Coefficients determined
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* We have to make choices for these higher dimensional

symmetries

* We will employ a set of 12 models (M1-M12) spanning a

variety of HC and flavour groups
* Varying group structures

e Coefficients determined

Models of Composite Higgs at the FCC

M1-M12 First proposed
1312.5330/1610.06591
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* We have to make choices for these higher dimensional

symmetries

* We will employ a set of 12 models (M1-M12) spanning a

variety of HC and flavour groups
* Varying group structures

e Coefficients determined

M1-M12 First proposed
1312.5330/1610.06591

This talk: pseudo-scalar a which is

always present in models of this nature

Models of Composite Higgs at the FCC
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Composite Higgs vs technicolour

. : Higgs sector replaced with fundamental gauge dynamics
featuring fermionic matter fields

e Gauge dynamics break a symmetry of the theory

 Both need a separate sector to provide mass to fermions

 Fermion condensate breaks
EW symmetry * Fermion condensate breaks
e Higgs identified with lightest global symmetry group G
scalar excitation of the
condensate * Higgs identified with pNGB

Models of Composite Higgs at the FCC Alan Cornell | 22 November 2022

11



A CH model is characterised by some scale f at which condensation

of fundamental fermions leads to the formation of the Higgs.

* |n technicolour, this scale is equal to the scale of electroweak
symmetry breaking,v = 246 GeV

(condensate breaks the EW symmetry and creates the Higgs all at once)
* |n composite Higgs models, the vev of the Higgs breaks EW

symmetry

— system characterised by & = v/f: indicates difference in energy
between scale of EWSB and condensation forming Higgs.

In the technicolour limit, & = 1.

In limit f — 00, new physics decouples leaving SM (£ = 0)
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Underlying fermions

We have v, y in two different irreps of the hypercolour group

EW-charged v : generate Higgs and EWSB upon condensation
multiplicity matches minimal coset

QCD y : partial compositeness
carry QCD colour and hypercharge

Once the underlying dynamics are specified, we may only have the

following patterns
SU(Ny)/Sp(Ny)
SU(Ny)/SO(Ny)
SU(Ny) x SU(Ny)/SU(Ny)
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Mass generation for fermions

In a general composite Higgs model, mass is generated for SM
fermions through four fermion interactions or |partial compositeness.

/

Requires fermions in two
different irreps of HC group

* Cannot accommodate enough partners to realise PC for all
fermions:

* choose top quark PC only

* Top mixes with a composite state of the new strong sector with
the same quantum numbers: suppresses FCNC and CP-
violating terms

LOyrir¥,, + yr¥iptr + h.c
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Ubiquitous U(1) scalars

Always have singlet pseudo-scalars assoc. to global U(1) symm,
(and a coloured octet from coloured underlying fermions)

/
a,1 ,78

a, ' undergo non-trivial mixing. In the decoupling limit,
1

Sl Qdec = — 5 5 The pNGB ais naturally lighter than the typical
\/ 14 % Ny

. Y confinement scale, and the orthogonal 1 is heavier
q2 Ny f2
X XIx

Y condensing: the axial U(l)w spontaneously broken, but also

explicitly broken by a ABJ anomaly = heavy Goldstone.

Also have x fermions condensing = additional axial U(l)% SB.
Possible to construct an ABJ anomaly free linear combination
U(1), : associated pseudo-scalar will be light
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A U(1) pseudo-scalar emerges

----------------------------------------------------------------

How has it evaded detection so far?
* Needs to be weakly coupled - '
I no strong or electric charge

e Small couplings

. o LOW mMass
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A U(1) pseudo-scalar emerges

Minimal constraints region in the
How has it evaded detection so far’? lower mass region

* Needs to be weakly coupled -

fy [TeV]

M9

no strong or electric charge

e Small couplings

- —I{R-{-I-FAJ/WJE_L
fo revi

. e Low mass ¢ z
e Previous searches (di-j/di-u/di-y/di-7) I
yield poor constraints in low pseudo- e o e w
— yy@8 — Zy ¢f S
scalar mass region — W e

G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Serddio Front.in Phys., vol. 7, p. 22, 2019.

* QCD backgrounds play a role in low (Top band: bounds from a.

Side band: bounds from 7.
Bounds on fw computed individually and

(therefore difficult to search there) then most stringent bound chosen)

mass searches at hadron colliders
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U(1) pseudo-scalar

1 szmf

1
L== ((9“@) (0"a) — §m§a2 — Xy 7 aV ;> p+
9°K, > Kw ¢*Kp
Ga Ga,w/ Wz Wz,ul/ aB VB,uz/
167T2 faa 1672, 1672, K
. : mass up to 100 GeV

e Small couplings to SM particles
° under SM symmetries
e Couples directly to SM fermions

(proportionally to fermion mass)
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U(1) pseudo-scalar

1 szmf

1
L== ((9“@) (0"a) — §m§a2 — Xy 7 aV ;> p+
9°K, > Kw ¢*Kp
Ga Ga,w/ Wz Wz,ul/ aB VB,uz/
167T2 faa 1672, 1672, K
. : mass up to 100 GeV

e Small couplings to SM particles
° under SM symmetries
e Couples directly to SM fermions

(proportionally to fermion mass)

Previous phenomenology in 1710.11142, 1902.06890, focusing on LHC searches
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This model (+ new implementation)

Built on recent works:

Eur. Phys. J. C (2018) 78:724 THE EUROPEAN
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di-tau searches for light
pseudo-scalar including
only top loops

Models of Composite Higgs at the FCC

Description of U(1) scalars

arXiv.org > hep-ph > arXiv:1902.06890

High Energy Physics - Phenomenology
Light scalars in composite Higgs models

G.Cacciapaglia, G.Ferretti, T.Flacke, H.Ser6dio
(Submitted on 19 Feb 2019)

This model: SM loops, full LO

Alan Cornell | 22 November 2022 18



Model implementation tools: simulation

We will examine FCC (not built yet!)

FEYNRULES 2.0- A complete toolbox for
tree-level phenomenology

Using a simulation of the collider

E Adam Alloul?, Neil D. Christensen”, Céline Degrande “¢, |

Claude Dubr?, Benjamin Fuks®* i and detector to create data:
: FeynRules for model building:
MadGraph + MadEvent . Define all particles and how they interact with each
: other
\/ :
> < + :  MG5_aMC for simulation of signal and background
e !
processes:

Automated Tree-Level '
Feynman Diagram, Helicity Amplitude, . Model collisions at detector

anglEvent Generation Pythia for parton showering and hadronisation
Delphes (+ FastJet) for detector response:
Simulate how the particles would be detected
Analysis:

DELPHES : MadAnalysis: cutand count
fast simulation

XGBoost: machine learning
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Models

e M1-M12 including partial compositeness for the top

* Varying group structures

* Limit number of fermions so we don’t lose
asymptotic freedom

* HC: confining gauge interactions

e Custodial symmetry preserved

» Coefficients are computable: determined by the
dimension of the underlying fermionic
representation.

Ingredients: HC group, choice of fermion representations,
EW coset, QCD coset

Models of Composite Higgs at the FCC Alan Cornell | 22 November 2022
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Models of Composite Higgs at the FCC

Coset HC Y X —gx /gy Baryon|Name|Lattice
SO(7) - 6 S 5/6 5 M1
SU(5)  SU(6) |SO(9) P 5/12 % |
SO(5)  SO(6) |sO(7) - . 5/6 M3
so() 7P 8 /3 VY%
SU(5)  SU(6)
50(5) X Sp(6) Sp(4) 5 x As 6 x F 5/3  ¥xx | Mb Vv
SU(5) SU(3)2 |SU4) 5x Ay 3 x (F,F) 5/3 s M6 | |/
SO(5) ~ SU(3) |SO(10) 5 x F 3x (Sp,Sp) 5/12 X | wmr
SU(4) SU(6) |Sp(4) 4xF 6 x Ay 1/3 ” M8 |
Sp(4) ~ SO(6) [SO(11) 4xSp  6xF 8/3 X1 Mo
SU(4)2  SU(6) [SO(10) 4 x (Sp,Sp) 6 x F 8/3 M10
SU(4) = SO(6) |SU(4) 4x (F,F) 6x Ay 2/3 vox M1l | +/
SU(4)2  SU(3)? _ -
SORSI0) SUGB) 4x (F,F) 3x(Az,Az) 4/9 ¢y | M12

G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Ser6dio Front.in Phys., vol. 7, p. 22, 2019.
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Recall: minimal cosets are

SU(4)/Sp(4), SU(5)/SO(5),
SU(4) x SU(4)/SU(4)

A variety of hypercolour
groups

F: fundamental rep
A: antisymmetric rep
Sp: spinorial rep

Models of Composite Higgs at the FCC

Coset !HC Y X —gx /gy Baryon|Name|Lattice

SO(7) - 6 S 5/6 ’ M1

SU(5) | SU(6) ||SO(9) p 5/12 X | a2

SO(5) | SO(6) | |sO(7) - . 5/6 M3
so() | > <P . /3 VY%

SU(5) | SU(6)

S0/ )>< Sp(6) Sp(4) |5 x Ag 6 xF 5/3 Yvxx | Mb Vv

SU(5) y SU(3)%/[SU(4) | 5 x Ay 3 x (F,F) 5/3 s M6 | |/

SO(5) | SU(3) |[SO(10) 5 x F 3x (Sp,Sp) 5/12 X | M7

SU(4) | SU(6) ||Sp(4) |4x F 6 x As 1/3 - M8 |/

Sp(4) | SO(6) ||SO(11) 4x Sp 6 xF 8/3 X1 Mo

SU(4)* | SU(6)||SO(10) 4 x (Sp, Sp) 6 x F 8/3 ’ M10

SU(4) | SO(6)||SU4) |4 x (F,F) 6 x Ay 2/3 vox M1l | +/

SU(4)2 | SU(3)2 _ __

SU(4) SU(3) SU(5) 4x (F,F) 3x(A2,Az) 4/9 vy | M12

G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Serédio Front.in Phys., vol. 7, p. 22, 2019.
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dy (- charges of fermions

under non-anomalous U(1)

Structure determined by the
HC irreps of the fermions

A nice feature: all
coefficients in this model
are completely computable!
Based entirely on
characteristics of underlying
fermions

Models of Composite Higgs at the FCC

Coset HC Y X —gx /gy Baryon|Name|Lattice

SO(7) - 6 S 5/6 5 M1

SU(5)  SU(6) SO(9) p 5/12 X | a2

SO(5)  SO(6) |sO(7) - . 5/6 M3
so() 7P . /3 VY%

SU(5)  SU(6)

50(5) X Sp(6) Sp(4) 5 x As 6 x F 5/3  ¥xx | Mb Vv

SU(5) y SU(3)2 |SU(4) 5 x As 3 x (F,F) 5/3 s M6 | |/

SO(5) ~ SU(3) |SO(10) 5 x F 3x (Sp,Sp) 5/12 X | wmr

SU(4) SU(6) [Sp(4) 4xF 6 x As 1/3 ” M8 |

Sp(4)  SO(6) [SO(11) 4 x Sp 6 x F 8/3 X1 Mo

SU(4)* _ SU(6) |SO(10) 4 x (Sp, Sp) 6 x F 8/3 " M10

SU(4) = SO(6) |SU(4) 4 x (F,F) 6x Ay 2/3 vox M1l | +/

SU4)2  SU(3)? _ .

SU(4) SU(3) SU(5) 4x (F,F) 3x(A2,Az) 4/9 vy | M12
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U(1) pseudo-scalar a

1 ’LCfmf

1
L== ((%a) (0"a) — §mia2 — Xy i aW py° W s+
2K g2K g/2K
Ga Ga,w/ W’L Wz/u/ aB VBMV
16721, " 1672, 1672f, "

¢ Light: mass up to 100 GeV waw 2N, f2
e Small couplings to SM particles Ja= \/
¢ Singlet under SM symmetries

Ct = Cp (

qzb +qx

e Couples directly to SM fermions " cosar g 2T Siﬂ&)

v Ny Fx /Ny

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Mi1 M12
K, -72 —8.7 -63  —11. —49 —49 —8.7 -1.6 —10. -94 —33 —4.1
Kw 7.6 12. 8.7 12. 3.6 4.4 13. 1.9 5.6 5.6 3.3 4.6
Kz 2.8 5.9 —82 —17. 0.40 1.1 7.3 -23 —22. —19. -55 6.3
o 2.2 2.6 2.2 1.5 1.5 1.5 2.6 1.9 0.70 0.70 1.7 1.8
fa 2.1 2.4 2.8 2.0 1.4 1.4 2.4 2.8 1.2 1.5 3.1 2.6

G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Serodio Front.in Phys., vol. 7, p. 22, 2019.
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Anomalous coupling to bosons

Couplings of the form aXX’, XX’ are gauge bosons, proceed via
the Wess-Zumino-Witten anomaly.

Coupling can be broken into a BSM component (effective vertex)
and an SM component (loop of SM fermions)

Cy o
K{}:c5< L4 COSO{—|—f¢ L4 sinoz)

v Ny Fx /Ny

g 0999999999 / 9
fv L _(l _____ a
K,
- f
g 0990999999 g
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C“fm : - anomaly coefficients of the singlets assoc. with U(l)w( P
- fully determined by SM charges of underlying fermions.

Only dependence on the mixing angle a remains:
determined by the masses of the two states.

g 0999999999 / 9
fv L _(l _____ a
K,
- f
g 0990999999 g
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Coupling to bosons

A4 D —
SHEE T 1672, (

G,,G" + g KkyyW,h W+

gg Hv
2 2
MY 4 w4 TUv
Kk, F " + ——K7,2,,7 Kz, F 2,
SwCiw SwCw

4 ¢ ’ SC'tm%gA A2
@___4: @--O\/\Z "‘Q’Mﬁ,\{ 'ChZa = —27‘_2](_@/0 (F{,t —Iiv) 10g m—%h(aua) s

h A h h

.9 : t
3C?m?2k A?
h__. h_. - h__ b N ¢ t My Ky
<[___ Q\\ G o £haa 871'2](3 10g mt (8MCL) (6” )
¢ N ¢ ¢

G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Serddio Front.in Phys., vol. 7, p. 22, 2019.
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Coupling to gauge bosons: quark loops

4m2 \/_GF 2
T = Méf » 00 — 567 "%9+2A7f

A(t) =7f(7) Differs from Higgs result as now have a pseudo-scalar

( 2
PR [1og (} VI ) —m] if <1 bottom
T p—
\arcsmz (\/L_) it >1 top
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Production at lepton colliders

Consider production in p

association with a 20 ' 20

(virtual or real) boson:

ete” > ¢ a, ete” = jja
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or0(ee — XXa) (pb)

Production at lepton colliders

Consider production in
association with a

(virtual or real) boson:

ete” > ¢ a, ete” = jja
1073} |
\\M
! N
10_5 //’E\\\\
106} N FCC-ce/CEPC (M1) |
20 20 60 30

M, [GeV]

Models of Composite Higgs at the FCC

100

0707 91.2 GeV (x15)
0= 161 GeV (x15)
0= 240 GeV (x15)
70~ 350 GeV (x15)
070~ 365 GeV (x15)
jj91.2 GeV
jj 161 GeV
7240 GeV
jJj 350 GeV
7365 GeV

e —a4¢—L - a
-Qa
e
e
AEE
e e
L L L LR 1

Mass range of interest is relatively well

covered, even at the Z pole
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FCC-ee: 77 decay

L}

1

' [ ]

' 0.050 1

. I ]

X I ]

1

' I ]

L}

! —

'E 0010F 1
z ’ ]

0.005

BR(a

0.001 -

5x104p

— M9
— M10
— M11
— M12

Branching to r’s and b’s

highest (coupling
proportional to mass)

We choose 7 decay mode

Models of Composite Higgs at the FCC
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FCC-ee: 77 decay

;o ~—wm —w  Branching to z’s and b’s
E L 1 M2 — M10
{E oo, W Y highest (coupling

0_005§ i — M4 — M12

L ,
| — e proportional to mass)
0.001 E M7
se0f =g We choose 7 decay mode
vt
10° : : : :
e Consider a produced with a pair of roa 7T G s e 6w
1047 ab~! o O M4 o 0 M8 o 0 MI2
OS leptons (avoid multi jet bg) ; )
T N : : o
* Signal events expected for = I
° . B
. 107} ° °
subsequent decay to hadronic 7 A D
o 0o %
g . 10+ o * o §
e Sensitivity depends on model 5 - a H - J
M,[GeV]
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Analysis

. rete”™ - a ¢, a - Tt~ (hadronic taus)
* Z pole: low c.m energy means fewer background processes

. resulting from (virtual) Z/y events: look like our

signal, but don’t contain our a

* We simulate background to make the data realistic

Wf
€ —P—
f

ye

/
e —<—W<
AeE r  And others!
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Preselection: ensure objects are good quality when reconstructing
N, >2 with p(£)>10GeV; N,>2 with py(z)>5GeV; M, >12GeV; M, >10GeV. :
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Preselection: ensure objects are good quality when reconstructing
N, >2 with p(£)>10GeV; N,>2 with py(z)>5GeV; M, >12GeV; M, >10GeV. :

* Following preselection, we expect about

and up to
(maximal production at M, = 20/30 GeV)

* Signal looks swamped by background - it will be hard to see
* |[n the following analysis we will compare a

cut and count with ML
* Choose a sample of models with varying group structures for

llustrative purposes
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Machine learning

* The simple cuts in variables aren’t enough

* What if we can build an algorithm to differentiate the signal from

background?
* Make a big matrix of both signal and background, label them, and

ask the machine to learn how to identify the signal

features

i xll x% coe x{i—
1 2 d
X = "fz x.2 X.z objects
1 2 e d
_XN XN XN_ v

Models of Composite Higgs at the FCC Alan Cornell | 22 November 2022
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create a model (learning)

Feed unlabelled data into

Simulated data used to _
our trained model (testing)
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Decision trees: the basis of our algorithm

object

Internal nodes: check value
and compare to a threshold (‘if
yes, go left, if no, go right”)

Leaves: allow us to make predictions
(when an object lands on a leaf, it is
assigned the classification of that leaf)

classified
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While decision trees are interpretable, they are often not very
. powerful and can be unstable.

A more advanced class of algorithms builds on this idea..
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* \We want to train our tree so that at each node we split our data
In a sensible way.
* Once the tree is trained, a given object will traverse the tree until

it hits a leaf and is classified.

Bad Split Good Split

(D DN
B> @ O @

=+ Child nodes

Parent nodes -

While decision trees are interpretable, they are often not very
. powerful and can be unstable.

A more advanced class of algorithms builds on this idea..
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Machine learning: XGBoost

o s o
/ + R A
N

* Gradient boosting ML algorithm: combines many decision trees

XGBoost:

e Classify S or B: Logistic regression for binary classification

Models of Composite Higgs at the FCC Alan Cornell | 22 November 2022 36



Machine learning: XGBoost

XGBoost:

o = “
/ + R e A
N

* Gradient boosting ML algorithm: combines many decision trees

e Classify S or B: Logistic regression for binary classification

e Features optimised to maximise

performance without being too correlated

e 1:5 test/train split

e Hyperparameters: learning rate,

maximum depth, minimum child weight

e Trained by maximising auc,

then calculated significance

Models of Composite Higgs at the FCC

1.00
AR(TT)

0.75
M(TT)

M(TT) 0.50

pr{f) 0.25
n) 0.00
n(t)
o)
#(7)

pr(7T)
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e Variation across models,

e Lowest mass m destroyed by preselection, higher m , low cross-sect

Model Metric M, = 10 GeV M, = 20 GeV M, = 30 GeV M, = 40 GeV M, = 50 GeV
o auc 0.9840.003 0.87 +0.006  0.84 £ 0.0013  0.94 £0.0058  0.95 & 0.0066
ams 0.22 2.96 2.41 0.29 0.11
A auc 0.98+£0.0045  0.954+0.0029  0.87 = 0.020 0.88 = 0.042 0.890.061
ams 1.16 2.83 1.69 0.54 0.15
7 auc 0.98+£0.0018  0.86+0.0082  0.88+£0.0011  0.90+0.0012  0.94% 0.019
ams 0.22 3.20 2.58 0.27 0.14
ML auc 0.98-0.003 0.92+ 0.0057 0.9040.019 0.96£0.0078  0.96+0.0050
ams 0.37 4.08 2.35 0.14 0.042
i auc 0.9840.0075 0.9240.003 0.92+ 0.013 0.95£0.0044  0.96 £0.0082
ams 0.066 1.26 0.98 0.11 0.046
; Cf. cut and count significances:
: Model | M, =10 GeV ~ M, =20GeV M, =30GeV M, =40GeV M, =50 GeV
5 M2 0.0015 0.13 0.090 0.049 0.020
E M4 0.0013 0.42 0.26 0.12 0.040
E M7 0.0024 0.14 0.11 0.061 0.023
E M10 0.0042 0.11 0.055 0.023 0.0078
5 M12 0.00061 0.047 0.035 0.021 0.017
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Future prospects and conclusion

What luminosities are needed for us to reach 2 or 3 sigma?

Cut and Count Machine Learning
Model | M, (GeV) = ‘ = ‘ - ‘ - ‘ . . . . . .
T T B Significant gains by gradient boosting
20 3.55x10* 7.99x10% 68.5 154
30 7.41x10% 1.67x10° 103 232 L
M2 40 2.50><105 5.62><105 7.13><103 1.61><104 methOdS Over tradltlonal Cut and Count
50 1.50x10° 3.38x10° 4.96x10* 1.12x10°
10 3.55x108 7.99x 103 446 1.00x103 .
20 3.40x10° | 7.65x10° 74.9 169 ® At the FCC'ee We al’e eXpeCt|ng
M4 30 8.88><10i 2400><10;1 210 ' 473 :
40 4.17x10 9.38x10 2.06x10° 4.63%x10° _ 1
50 3.75x10° 8.44x10° 2.67x10* 6.00x10* around '150 ab
10 1.04x108 2.34%108 1.24x10% 2.79x10*
20 3.06x10* 6.89x10* 58.5 132
’ 30 4.96x10* | 1.12x10° 90.1 203 ° H h I f h
M 40 1.61x10° 3.63x10° 8.23x10° 1.85%10% Ig eSt masses remaln OUt O reaC )
50 1.13x10° 2.55x10° 3.06x10* 6.89x10*
10 3.40x107 7.65%x107 | 4.38x10% | 9.86x10°
20 4.96x10* 1.12x10° 36.0 81.1 aS does M — 10 G@V
30 1.98x10° 4.46x10° 109 244 a
M10 6 6 4 4
40 1.13x10 2.55%x10 3.06x10 6.89x10
50 9.86x10° 2.22x107 3.40x10° 7.65x10° e .
10 1.61x10° | 3.63x10° | 1.38x10° | 3.10x10° ¢ POSSIbIlIty to aChIeve 20 Or even 36
20 2.72x10° 6.11x10° 378 850
N 30 4.90x10° 1.10x 108 624 1.41x103
40 1.36x10° 3.06x10° 4.96x10* 1.12x10° fOF Several mOde|S
50 2.08x10° 4.67x10° 2.84x10° 6.38x10°
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e Significant gains via machine learning methods

* A direct search for a light composite pseudo-scalar at high
integrated luminosity lepton colliders should be considered

e Could be separately optimised for the heavier configurations

by considering higher c.m. energies.

Models of Composite Higgs at the FCC Alan Cornell | 22 November 2022 39



e Significant gains via machine learning methods

* A direct search for a light composite pseudo-scalar at high
iIntegrated luminosity lepton colliders should be considered

e Could be separately optimised for the heavier configurations

by considering higher c.m. energies.

Thank-you all for your attention
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