GRAiNITA status report

S. Barsuk¹, D. Breton¹, A. Boyarintsev², I. Boyarintseva^{2,1}, H. Chanal³, A. M. Dubovik², G. Hull¹, A.Kotenko⁴, J. Lefrancois¹, S. Monteil³, <u>M-H Schune¹</u>, N.Semkiv⁴, I. Tupitsyna², M. Yeresko³

¹ Université Paris-Saclay, CNRS-IN2P3, IJCLab, Orsay, France
 ² Institute of Scintillation Materials of the National Academy of Science of Ukraine, Kharkiv, Ukraine
 ³ Université Blaise Pascal, CNRS-IN2P3, LP-Clermont, Aubiere, France
 ⁴ Kyiv National Taras Shevchenko University Ukraine

The overall idea (in a nutshell)

Inspired by LiquidO technique for neutrino detector (A. Cabrera et al. LiquidO Commun Phys 4, 273 (2021))

Typical sampling calorimeters: $\frac{\sigma_E}{E} \sim \frac{10\% - 15\%}{\sqrt{E}}$

Crystal calorimeters : $\sigma_{E} = \frac{1\%-2\%}{1\%-2\%}$

$$\frac{O_E}{E} \sim \frac{190 - 290}{\sqrt{E}}$$

Requirements:

- fine sampling
- scintillation light locally contained

Shashlyk-type calorimeter

ZnWO₄

$ZnWO_4$ possible candidat:

- LY= 10kph/MeV
- Density 7.62
- Index n=2.1
- $\tau = 20 \ \mu s$
- $\lambda_{max} = 480 \text{ nm}$
- grain size : 0.5 mm 1 mm

GEANT4 simulation ZnWO4 + CH2I2 cubes (random position)

1mm cubes $\frac{\sigma_E}{E} \sim \frac{2\%}{\sqrt{E}}$

ISMA has done specific R&D and has produced grains & plates of $ZnWO_4$ At hand:

- ~ 1kg of $ZnWO_4$
- grains of BGO (200 g)
- small plates of BGO & of ZnWO₄

²⁴¹Am spectra for ZnWO₄ grains

Better homogeneity in the grains light yield of the second production

Production under control:
grains are similar to larger crystals
homogenous production

				1
		Max Amp	Sigma	
	Crystals	[mV]	[mV]	
	1 grain 1st batch	257.1	36.1	
	1 grain 1st batch	307.7	34.9	
	1 grain 2nd batch	302.5	32.9	
•	1 grain 2nd batch	290.2	36.6	
	Grains 1st batch	260.7	59.2	
	Grains 2nd batch	292.7	43.1	
	0.85 mm plate	298.2	36.9	
	1.03 mm plate	300.3	34.0	
	2.14 mm plate	284.2	36.6	
	3.14 mm plate	266.9	35.1	
	4.25 mm plate	272.8	34.5	
	1 cm ³ crystal	181.4	26.7	
				-
	2x2x4 cm ³ crystal	125.9	23.2	

PMT

PMT

PMT

PMT

PMT

First test bench results

 $< 50 \text{ g of ZnWO}_4$

Study of the pulse time delay: average light path in $ZnWO_4$ + propanol ~ 17 cm

Light absorption too large (wrt to kitchen salt test)

 \rightarrow new studies with the new ZnWO₄ grains, a green LED and a better matched WLS fiber

Which fibers work better for ZnWO₄?

Amount of light created by the UV LED is different from those created by ionizing particles but the wave length is very similar

UV LED :

A set of different fibers provided by Kuraray:

- o Y11 (200)
- o **O2(100)**
- o O2(300)
- o R3(300)

New

+ amplifier integrator with long time constant, amplitude

→ charge→ Number of photo-electrons

RMS $\overline{Amplitude} - \overline{\sqrt{N_{phe}}}$

FCCee France-Italy - November 2022

Sci + Fiber	Amplitude (pc)	Corrected RMS (pc)	N _{phe}	Comment
ZnWO ₄ + O2(100)	325	61.33	28.1	Best configuration
ZnWO ₄ + Y11(200)	237	48.65	23.8	
ZnWO ₄ + O2(300)	203	49.9	16.5	
ZnWO ₄ + R3(300)	290	57.0	25.9	
Plastic + Y11(200)	994	72.3	189	SiPM saturation (600 cells)
BGO + Y11(200)	288	46.9	37.7	
BGO + O2(100)	334	55.7	35.9	
		RMS corrected for the dark current SiPM # of phe (LED OFF measurements)	RMS Amplitud	$\frac{1}{le} = \frac{1}{\sqrt{N_{phe}}}$

O2(100) best fiber for ZnWO₄, well working also for BGO

Higher light yield from plastic scintillator compared to $ZnWO_4$: due to UV excitation? (it is the same for ionizing particles). Seems to be the case for a scintillator + PMT read-out (back-up).

Try with 2 types of fibers ?

ZnWO₄+ Y11(200) or O2(100) WLS fiber (Kuraray)+SiPM (Hamamatsu S13360-3075CS)

New

Towards a 16 fibers test bench

- Active volume = $2.8 \times 2.8 \times 6 \text{ cm}^3$ (~200 g of ZnWO₄)
- Fibers spacing: 7 mm
- 16 fibers read-out by SiPM
- $\circ~$ Possibility to repeat the study with the well known BGO

- Blue/Green LED injected in the middle (& UV LED with a quartz fiber ?)
- Cosmic rays triggering

What will we learn ?
Number of photo-electrons par GeV
Study the uniformity response (μ close to a fiber or half-way)

Cosmic rays test bench design

Proposal:

- Upper sensor: 2 layers of TimePix3
 - 0.3° angular resolution
 - Perform the track reconstruction
 - ▶ 2 cm² (!)
- Lower sensor: 2 scintillator tiles
 - Detect stopping muons
 - Timing
- Expected yield \approx 1800 muons/day

Pulse Shape Discrimination

Two components (one fast, one slow) for the scintillation decay time in inorganic crystal Higher ionizing particles (low E proton) : higher fraction of fast component

With ZnWO4: clear difference between γ and α (https://arxiv.org/pdf/nucl-ex/0409014.pdf)

Type of irradiation	Decay constants, μs		
	$ au_1$ (A ₁)	$ au_2$ (A ₂)	$ au_3$ (A ₃)
γ ray	0.7(2%)	7.5 (9%)	25.9 (89%)
α particles	0.7 (4%)	5.6(16%)	24.8 (80%)

First step : different responses of electrons and pions

Starting a Geant4 simulation

 $ZnWO_4$ / CH_2I_2 homogenous volume:

What's next ?

- Building and analyzing the 16-fibers prototype
- Build a calorimeter module (~ 35 kg ZnWO₄) with horizontal fibers
- Could we still improve the grains technology ?
- What about further fiber development ?
- Beam test

backup slides

Test of scintillators: reference point

Scintillator type	Pulse maximum	Average PMT QE		
ZnWO ₄ 4mm plate	0.35 V	14%	Issue do the the very long signal (not	
ZnWO ₄ 2mm plate	0.34 V	14%	fully integrated) \rightarrow lower voltage	
BGO 2mm plate	0.25 V	16.5%		
Plastic Sci 3mm plate	1.25 V	25%		

13% of the light is trapped in BGO due to its refractive index wrt to grease

Ratio of BGO wrt Plastic :
$$\frac{0.25 V}{1.25 V} \times 1.13 \times 1.51 = 0.34$$

ratio \overline{O} ratio \overline{O}

ZnWO₄+R-3 WLS fiber (Kuraray)+SiPM (Hamamatsu S13360-3075CS)