Silicon Detector R&D for IDEA

Manuel Rolo (INFN),

on behalf of the **IDEA Community** and on behalf of the **ARCADIA Collaboration**.

Istituto Nazionale di Fisica Nucleare

IDEA Detector: proposal for FCC - ee

Preshower

DCH Rout = 200 cm

DCH Rin = 30 cm

Cal Rin = 250 cm

Cal Rout = 450 cm

an "Innovative Detector for Electron-Positron Accelerators", inspired on R&D "4th detector concept" for ILC (DREAM/RD52)

- * ultra-light drift chamber wrapped by silicon microstrip layer
- dual-readout calorimeter and thin, low-mass superconducting solenoid coil
- * MAPS-based silicon pixel vertex detector and silicon tracker

Detector height 1100 cm

Yoke 100 cm

Detector length 1300 cm

Dual Readout Calorimeter

DCH $z = \pm 200$ cm

VTX

Magnet $z = \pm 300$ cm

Silicon Wrapper

Silicon Detector R&D for IDEA: Outline

- * an "Innovative Detector for Electron-Positron Accelerators", inspired on R&D "4th detector concept" for ILC (DREAM/RD52)
- * ultra-light drift chamber wrapped by silicon microstrip layer
- * dual-readout calorimeter and thin, low-mass superconducting solenoid coil

* MAPS-based silicon pixel vertex detector and silicon tracker

- ATLASPix3 HV-CMOS: multi-chip module assembly and system integration
- ARCADIA CMOS FD-MAPS: design, production and characterisation platform
- Vertex detector mechanical and integration: Fabrizio Palla

Vertex detector study for its integration in the IR Room 3

17:00

ATLASPix3 KIT + China + UK + INFN Collaboration

Institute of High Energy Physics Chinese Academy of Sciences

NORTHWESTERN POLYTECHNICAL UNIVERSITY

University of BRISTOL

UNIVERSITY OF SOUTH CHINA

ATLASPix3 features in a nutshell

▶ pixel size **50×150** µm²

 $(25 \times 165 \ \mu m^2 \text{ small size prototypes delivered})$

- ▶ up to 1.28 Gbps downlink
- reticle size 20×21 mm²
- TSI 180 nm process on 200 Ωcm substrate
- ▶ 132 columns of 372 pixels
- \blacktriangleright digital part of the matrix located on periphery
- 25 ns timestamping
- 8 bits Time-over-Threshold
- both **triggerless** and **triggered** readout possible:
 - two End of Column buffers
 - 372 hit buffers for triggerless readout
 - 80 trigger buffers for triggered readout

floating electronic:

pixel1

depleted substrate

ATLASPix3 quad-chip modules

Multi-chip module assembly

- aggregates electrical services and connection for multiple sensors
 - critical step for deployment of large size system
- quad module, inspired by ITk pixels
- implemented interface to readout system
- **developed software for module calibration**: no loss of performance vs. single chip sensors

6

ATLASPix3.1 modules

ATLASPix3.1 implement a fix in the constant current power regulators:

- regulator output stable above turn-on
- output power sufficient for digital and analog operation of the chip
- suitable for serial powering chains of chips/modules

More realistic module for large scale application

Designing a hybrid exploiting the shunt regulators:

- Single external power source can provide the 6 different voltages required by the chip
- Allows for serial powering, reducing the connections at the system level

7

Joint FCC France&Italy Workshop in Lyon

ATLASPix3: Collaboration Opportunities

***** DAQ Development

The current laboratory DAQ system does not simply scale for multi-module readout and synchronisation

***** System design for multi-module operation

- Conceptual design of a serial power chain biasing and readout
- Data aggregation to reduce data connections
- Service routing along mechanical supports (see Fabrizio Palla's talk)

***** Characterization of new sensor developments

- ***** Explore other multi-chip aggregation strategies
 - INFN approach based on ATLAS quads
 - It would be interesting to explore ALICE ITS-like configurations

8

ARCADIA DMAPS R&D at INFN

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

Fully Depleted Monolithic Active Pixel CMOS sensor technology platform allowing for:

- * Active sensor thickness in the range 50 μ m to 500 μ m or more;
- * Operation in full depletion with fast charge collection by drift, small collecting electrode for optimal signal-to-noise ratio;
- * Scalable readout architecture with ultra-low power capability (O(10 mW/cm2));
- * Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure (SEED), technology demonstration with large area sensors (ARCADIA)
- * Technology: 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk
- * Custom patterned backside, patented process developed in collaboration with LFoundry

"Fully Depleted MAPS in 110-nm CMOS Process With 100– 300-µm Active Substrate," in IEEE Transactions on Electron Devices, June 2020, <u>doi: 10.1109/TED.2020.2985639</u>.

ARCADIA Technology demonstrators

- ARCADIA-MD1a/b Main Demonstrator
- ARCADIA-miniD (debug)
- ARCADIA-miniD with on-chip LDOs for large-scale yield management
- MAPS and test structures for PSI (CH)
- MATISSE Low Power (ULP front-end for space instruments)
- ▶ pixel and strip test structures down to 10µm pitch
- STRA 64-channel mixed signal ASIC for Si-Strip readout
- 32-channel monolithic strip and embedded readout electronics
- ▶ (LC2) MATISSE_TIMING: VFE for fast timing (R&D for ALICE3 timing layers)
- (LC3) Small-scale demonstrator of a X-ray multi-photon counter
- (LC3) Wafer splits with timing layer, new R&D towards <<100 ps timing performance: test structures and multi-pixel active demonstrator chip

ARCADIA-MD1: Chip Floorplan

Top Padframe

Auxiliary supply, IR Drop Measure

Matrix

512x512 pixels, Double Column arrangement

End of Sector (x16)

Reads and Configures 512x32 pixels

Sector Biasing (x16)

Generates I/V biases for 512x32 pixels

Periphery

SPI, Configuration, 8b10b enc, Serializers

Bottom Padframe

Stacked Power and Signal pads

11

Front-end FEB-MD1 and DAQ

- 2 Samtec FireFly connectors for ASIC signals (Clock, SPI, Data)
- Connection to external low jitter Clock (via SMA connectors)
- Bias to the DMAPS backside or (wirebonded) to top pads
- Independent LDOs for IO Buffers, Analog Core, Digital Core
- PCB through-hole for matrix BSI
- custom FMC-to-Firefly breakout board

MD1 characterisation data: particles

Few cosmic tracks (Tilted sensor)

INFŃ

Joint FCC France&Italy Workshop in Lyon

Silicon Detector R&D for IDEA

380

360

220

340

Pixel/Strip Test Structures

BN3

49

* pixels come in different flavours:

- Pseudo-Matrices of 1x1 and 2x2 mm²
- 50 μm (5 variants)
- 25 μm (3 variants)
- 10 μm (6 variants)

***** and strips as well:

- 25 μm pitch pixelated + 25 μm continuous (10+10)
 [2 variants]
- 10 μm pixelated (4 groups of 12 strips connected to pads) [4 variants]

CMOS Embedded Si-strip and readout

- Design and Production of continuous and "pixelised" strips, range 10 100µm pitch
- Proof-of-concept: CMOS monolithic strip block and readout electronics (active sensor area is $12800 \times 3200 \ \mu m^2$)
- Smoke tests OK (analogue power, bias and output baseline) , problems with test board (mfg & components) being solved

Silicon Detector R&D for IDEA

ARCADIA Sensor: wafer splits and new silicon

HR wafers - no backside lithio

TCAD simulation: ARCADIA MAPS + gain layer - 50um thickness - Vbias: back -30V - Sensor +35V

- 23 wafers delivered with process splits on n-epi, substrate type and thickness, lithography on backside;
- low resistivity epi-layer for delayed on-set of punch-through currents;
- preliminary studies show the possibility to add a gain layer (10-20) wit minor modifications to the process;
- fab out of new silicon scheduled end January (2 lots with 42 wafers).

17 Manuel Rolo [INFN]

Silicon Detector R&D for IDEA

Joint FCC France&Italy Workshop in Lyon

ARCADIA Sensor: R&D for fast timing

- partial lot of HR and p+ wafer splits implement an extra gain layer added to the sensor;
- first small-scale demonstrator 4 x 16 mm²;
- 8 matrices (64 pixel pads each) implementing different sensor and front-end flavours;
- $250 \times 100 \ \mu m^2$ pixel pads;
- 64 analogue outputs on each side, rolling shutter of single matrix readout;

ARCADIA FD-MAPS: Collaboration Opportunities

- * **ARCADIA:** CMOS sensor design and fabrication platform with several INFN groups working on:
 - Sensor R&D and Technology
 - CMOS IP Design and Chip Integration
 - Data Acquisition for electrical characterisation and beam tests with multi-chip telescopes
 - Radiation Hardness qualification
 - System-level characterisation for Medical (pCT), Future Leptonic Colliders and Space Instruments

* Collaboration Opportunities

- Joint engineering runs: third-party involvement for design and technology sharing agreed with foundry, integration flow demonstrated on 3 full single-project wafer productions;
- Characterisation of full-scale prototypes (e-kit available) and sensor test structures, joint beam tests and DAQ future developments.

Merci de votre attention!

Istituto Nazionale di Fisica Nucleare

Manuel Rolo (INFN),

on behalf of the **IDEA Community** and on behalf of the **ARCADIA Collaboration**.

The First Joint FCC - France & Italy Workshop on Higgs, Top, EW, HF and SM physics

ATLASPix3 ongoing and future developments

- Engineering run developing the ATLASPix3 family
- Design driven by KIT
- Contribution from LHCb Mighty Tracker (scintillating fibre and CMPS MAPS technologies combined), CEPC and other projects
- To test evolutions of ATLASPix3:
 - * $25\,\mu\text{m}$ pitch in the bending plane
 - Lower capacitance
 - Amplifier and comparator re-design
 - Electronics in pixel or in periphery
 - Daisy chain readout

20

Multi-plane MD1 Telescope Configuration

Silicon Detector R&D for IDEA

INFN

Small-scale demo: MATISSE

Silicon Detector R&D for IDEA

Small-scale demo: SEED MATISSE

MATISSE

	PIXEL ELECTRONICS				
		DESIGN SPECs RESULTS			
	Technology	CMOS 110 nm			
	Voltage Supply	1.2 V			
	Measurements	Hit Position			
		Energy Loss			
	Number of Channels	24 × 24			
	Input Dynamic Range	Up to 2	4 ke⁻		
	Sensor Capacitance	~20 fF			
	Analog Gain	131 mV/fC	116 mV/fC		
CSA	Input Common Mode Voltage	> 600 mV			
	Local Memories	2 (~70 fF each)			
	Noise	< 100 e-	~40 e-		
	Shutter Type	Snapshot			
	Readout Type	Correlated Double Sampling			
		Double Sampling			
	Readout Speed	Up to 5 MHz			
	Other Features	Internal test pulse			

Characterisation with SEED MATISSE

Map of pixel reset voltage (MATISSE 24x24 pixel matrix) as a function of the backside voltage applied to the sensor. Depletion starts from the back-side.

Non focused pulse

Silicon Detector R&D for IDEA

Joint FCC France&Italy Workshop in Lyon

Characterisation with pseudo-matrices

Cuts along the Metal + P and Metal + N lines on the energy map with varying bias voltages show uniform CCE above FD with ~1.7 % loss over metals (100 μ m thick)

Standard deviation maps show the expected higher electronic noise when the sensor is not depleted (below 30 V), due to the higher top capacitance.

(RUĐER BOŠKOVIĆ INSTITUTE)* Zagreb, Croatia

- \circ 600 keV to 2 MeV Tandetron
- TANDEM 1-6 MeV proton source
- LASER TCT laboratory

301 35901 36001 361 01 36201 36301 3640

21420

21410

x [µm]

21400

Silicon Detector R&D for IDEA

21420

2141

21400

ARCADIA Depletion studies

Group	thickness	Vdepl	Vpt
GROUP 1: wafer #06 and #07 (BSI 8µm n- epi / N-)	200µm	87 – 102	105 – 111
GROUP 2: wafer #02 and #03 (FSI 8µm n- epi / N-)	100µm	20 - 30	36 – 39
GROUP 3: wafer #15 and #16 (BSI 7µm n- epi /N-)	200µm	50 - 66	66 - 76
GROUP 4: wafer #10 and #12 (FSI 7µm n- epi /N-)	100µm	9 – 18	20 – 25
GROUP 5: wafer #20 and #24 (FSI 8µm n-epi 1 40 µm / P+)	300µm	21 – 23	24 – 26
GROUP 6: wafer #22 and #23 (FSI 8µm n-epi 1 40 µm / P+)	100µm	20 – 30	24 - 33

note: V_{depl} and V_{PT} ranges are reported in absolute value. Below: distribution of V_{depl} and V_{PT} for different pixel pitches

Silicon Detector R&D for IDEA

ARCADIA sensor characterisation

IV and CV measurements of test-structures: proven functionality, stable operation at full depletion, and good agreement with TCAD simulations

Silicon Detector R&D for IDEA

Joint FCC France&Italy Workshop in Lyon

ARCADIA sensor characterisation

IV and CV measurements of test-structures: proven functionality, stable operation at full depletion, and good agreement with TCAD simulations

Silicon Detector R&D for IDEA

Joint FCC France&Italy Workshop in Lyon

ARCADIA-MD1: Integration

Silicon Detector R&D for IDEA

ARCADIA-MD1: Peripheral Dataflow

- * Each sector has an independent readout and output link when operating in High Rate Mode
- Sector data is sent out (8b10b encoded) via dedicated 320MHz DDR Serialisers
- In Low Rate Mode, the first serialiser processes data from all the sections. The other serialisers and C-LVDS TXs^(*) are powered off in order to reduce power consumption.

* "A 2 Gbps custom LVDS transceiver for the ARCADIA project", talk at IEEE NSS-MIC 2021

Low Rate mode

MD1 characterisation data: gain/noise

Results before threshold equalisation, good match with simulation and monte-carlo

FEB3 Baseline (mV)

