Etienne Rochepault

on behalf of the magnet group of CEA-Paris

Stefania Farinon

on behalf of applied superconductivity groups of INFN Genova and Milano

High-Field Magnets Program in Italy and France

Joint FCC-France & Italy Workshop

Lyon, November 22nd 2022

DE LA RECHERCHE À L'INDUSTRIE

Istituto Nazionale di Fisica Nucleare

RD3 - Nb3Sn Magnets The main goals of the RD3 Line are:

12 T (cos- θ configuration)

towards 16 T dipole (block-coil configuration)

- Robust Nb₃Sn Accelerator Magnet
- Design and demonstrate a long dipole magnet with robust performance in the range of 12T
- Seek cost-effective engineering solutions, suitable for large-scale production ۲
- Ultimate Nb₃Sn Magnet Technology •
- Pursue and accelerate the work started in the frame of the FCC Magnet Development Program towards 16T dipole models (through collaborations) ٠

Joint FCC-France and Italy Worshop

Explore alternatives and develop design and technology for ultimate performance Nb_3Sn magnets ٠

DE LA RECHERCHE À L'INDUSTRIE

INFN Istituto Nazionale di Fisica Nucleare

•

•

S.Farinon and E.Rochepault

towards 16 T Nb₃Sn magnets

Joint FCC-France and Italy Worshop

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

cos-theta

INFN Conceptual studies: EuroCire (1991) 0010

CO

- The EuroCirCol project focused on the key design i the feasibility of a 100 TeV hadron collider in a 10
- WP5, devoted to high-field dipoles, involved explo

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

- The INFN option was chosen as the baseline for the CDR published in 2019 mainly because accelerator dipoles were usually wound in a cos-theta configuration.
- However, the conclusion was that each configuration could not be selected/abandoned on the basis of design alone.
- The CEA and INFN teams then started working on demonstrators.

Eur. Phys. J. Special Topics 228, 755-1107 (2019) (C) The Author(s) 2019 https://doi.org/10.1140/epjst/e2019-900087-0

Regular Article

INFN

Istituto Nazionale di Fisica Nucleare

FCC-hh: The Hadron Collider

Future Circular Collider Conceptual Design Report Volume 3

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

Fig. 3.1. Main dipole cross-section.

Winding mockups (test state of the art cables in prototype coils)

Characterization of cables during the heat treatment at 650°C

Défaut d'imprégnation Bloc central Rail inox Empilement de 5 conducteurs Characterization of dummy coil blocks (in representative conditions at room-temperature and at cold)

Characterization of resins Joint FCC-France and Italy Worshop

FCC-hh Magnet Program

Joints mockups (test the grading technology before implementing it into coils)

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

DE LA RECHERCHE À L'INDUSTRIE

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

FCC-hh Magnet Program

DE LA RECHERCHE À L'INDUSTRIE

Conceptual studies

Non-powered samples

Powered samples

Subscales

12-141

16 T demo

• INFN activity dedicated to Nb₃Sn powered samples: ASTRACT Analysis of STrain Affected CharacTeristics of brittle sc cables

critical current and magnetization mesurements of virgin and rolled Nb₃Sn strands

Joint FCC-France and Italy Worshop

- development of a sample holder to perform measurements under transverse strain at 4.2 K
 - The wire is fixed on the tap
 - By pulling up the press, the wire deforms along the transverse direction.
 - Capacitive displacement sensors (CDS) measure the distance between the press and the tap, which is related to the transverse deformation.
 - Production of the components is underway at the Galli & Morelli (LU) workshop.
 - The electric motor, actuator, CDS and current conductors have been purchased.

FCC-hh Magnet Program

- In order to train and develop the required infrastructure, CEA has built a Short Model Coil, namely SMC, with the help of CERN.
- CERN has sent the parts and procedures, and CEA has built the coil entirely at Saclay.
- The coil has then been tested at CERN with success, demonstrating that CEA is now mastering the state-of-the-art technology.

- INFN is developing a 1:1 scale section, 500 mm long, of the real model to gain expertise on mechanical aspects and related issues:
 - Dummy aluminum coil instead of Nb₃Sn cable
 - Bladder&key process verification during assembly and cooling to 77 K
 - Instrumentation with resistive strain gauges (SG)
 - Tolerance measurement on individual components

Joint FCC-France and Italy Worshop

Ces

Conceptual studies

Non-powered samples

Powered samples

Subscales

12-14 T demo

16 T demo

- The goal is to prove the « grading » technology in block-coils, which is the use of 2 different conductors in the same coil, in order to be more compact and use less conductor.
- The technological concepts have been 1st validated using mockups, as presented before.
- The design has been made at CEA and the coil components have been manufactured and should be delivered soon.
- Then the fabrication of the coil will start early next year. The magnet will be fully assembled at CEA and tested at CERN.

Aperture	None
Outer diameter	480 mm
Structure length	2.0 m
Nominal central field	11.1 T
Ultimate central field	12.0 T
Nominal peak field	12.7 T
Ultimate peak field	13.7 T

FCC-hh Magnet Program

Joint FCC-France and Italy Worshop

14

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

FCC-hh Magnet Program

• For the 12 T demonstrator, INFN's choice was to go directly to industry.

INFN: 12 T demo FalconD

- After an international tender, the fabrication of the coils was awarded to ASG Superconductors (Genova, Italy).
- The assembly with the bladder&key technique will be performed at the INFN LASA laboratory in Milan.
- Magnet completed and tested by the end of 2025.

INFN

Istituto Nazionale di Fisica Nucleare

Aperture	50 mm
Outer diameter	650 mm
Structure length	1.5 m
Nominal central field	12 T
Nominal peak field	12.5 T
Margin on the loadline	23.6%
Ultimate central field	13.5 T

- F2D2, « Future Flared-ends Dipole Demonstrator », is the CEA development plan towards 16 T
- The conceptual design, done by CEA, involves the « grading » technology that is being developed in the R2D2 program.
- The design will use the same cables as for R2D2 to minimize the cable development.
- Waiting for proof-of-concept R2D2 and technology development
- Fabrication planned 2026-2027 at CEA
- Assembly and pre-loading in the structure at CEA
- Cold and powering tests at CERN

Aperture	50 mm
Outer diameter	650 mm
Structure length	2.0 m
Nominal central field	15.5 T
Short sample central field	17.8 T
Nominal peak field	16.2 T
Ultimate peak field	18.6 T

towards 16+ T HTS magnets

EXAMPLE 1 REBCO Conductor performance update

[1] Molodyk. A. et al 2021 Scientific Reports vol. 11. 2084

[2] J D Weiss et al 2020 Supercond. Sci. Technol. 33 044001

https://nationalmaglab.org/images/magnet_development/asc/plots/Je_vs_B-041118_1024x743_PAL.png

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

• there are 2 running programs

PNRR_IRIS

development of a HTS (REBCO) dipole, 8-10 T , 10-20 K cryogen-free, 50mm x 80 mm free bore, Controlled Insulation technology, to be installed in the user facility for Genova pole of IRIS

- design study of high-field (20 T) and large aperture (150 mm) target solenoid with heavy shielding to withstand heat (100 kW/m) and radiation loads
- design study of ultra-high-field solenoids (40-60 T) to achieve desired muon beam cooling
- development of a Solenoid Coil Demonstrator (SCD), a representative test configuration (20 T, 50 mm, 500 MPa) to support the conceptual design with a strong experimental basis.

Solenoid zoo for Muon Collider

- Target solenoid
- 1.5 m 20 T 2MW
- Muon cooling
- 1km 2 T to14 T
- Final cooling
- 8.5 m 40 T or 60 T

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

- Italy (INFN) and France (CEA) are involved with CERN in a <u>global strategy towards 16T Nb₃Sn Magnets</u>:
 - INFN: robust concepts using a partnership with industry
 - CEA: technology developments in the lab
- « Development Pyramid » used within the HFM program
 - Non-powered samples \rightarrow material and technology
 - Powered samples \rightarrow fast turnover representative tests
 - Subscale models \rightarrow proof-of-concepts
 - * 12 T demonstrators \rightarrow implementation of technology
 - * 16 T demonstrator \rightarrow ultimate goal
- CEA/CERN strategy for 20 T HTS Magnets:
 - MI (Metal-Insulated) HTS tapes for very high current densities
 - Relying on fast turn-over / reduced-risk subscales
- INFN strategy for HTS Magnets
 - PNNR_IRIS: development of a HTS (REBCO) dipole in the range 8-10 T
 - MU_COL: development of a 20 T Solenoid Coil Demonstrator

S.Farinon and E.Rochepault

Joint FCC-France and Italy Worshop

etienne.rochepault@cea.fr

Merci

DE LA RECHERCHE À L'INDUSTRIE

stefania.farinon@ge.infn.it

Grazie

Istituto Nazionale di Fisica Nucleare