SWELL SRF multipacting studies

Adrien Plaçais*, Y. Gómez Martínez*, M. Meyer*, F. Bouly* FCC France and Italy workshop, November 22nd, 2022

*Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France

Framework

Multipactor problematics

First multipactor studies

Conclusions and future work

Appendix

Framework

SWELL: Slotted Waveguide ELLiptical cavity

- Designed at CERN;
- great candidate to have a single cavity type for (almost) all the FCCee beam energies;
- works @600 MHz;
- seamless, robust against detuning;
- four waveguides slots to extract Higher Order Modes.

Figure 1: 3D representation of the SWELL cavity, made of four independant quadrants (3/4 represented).

Slotted waveguide (×4)

HOM extractor $(\times 8)$

Franck Peauger et al. "The SWELL cavities program: The SWELL cavity development plan". In: FCC Week 2022. Paris, France, 2022

The SWELL single-cell prototype

- First prototype @1.3 GHz, single-cell;
- design close to the TESLA cavity;
- multipactor study: simulations (LPSC) + experiments (CERN, IJCLab).

Figure 2: 3D representation of the single-cell SWELL prototype; vacuum is in blue.

F Peauger et al. "SWELL and Other SRF Split Cavity Development". In: *Proceedings of LINAC2022*. Ed. by Peter McIntosh et al. Liverpool, UK: JACoW Publishing, Geneva, Switzerland, 2022, pp. 300–304

Multipactor problematics

- Multipactor is an electron avalanche;
- \cdot several multipactor zones at different $E_{\rm acc}$ can exist;
- can result in:
 - cavity's surface heating;
 - \rightarrow quench;
 - \rightarrow surface desorption and *corona* discharges;
 - RF power dissipation;
 - quality factor spoiling.

Multipactor created by the combination of two physical phenomena:

• electron emission;

Multipactor created by the combination of two physical phenomena:

• electron emission;

Multipactor created by the combination of two physical phenomena:

• electron emission;

- electron emission;
- electrons/RF signal resonance.

- electron emission;
- electrons/RF signal resonance.

First multipactor studies

Less surface contamination \rightarrow smaller multipactor zones

Figure 3: Multipactor zones for different samples and surface states. Simulations with SPARK3D.

S Aull et al. "Secondary Electron Yield of SRF Materials". In: ed. by Robert E. Laxdal, Jana Thomson, and Volker RW Scha. Whistler, BC, Canada: 17th International Conference on RF Superconductivity (SRF2015), Sept. 2015, H. Piel. Superconducting cavities. Tech. rep. Hamburg, Germany: CERN, 1988, pp. 149–196

Figure 4: $E_{\rm acc} = 6 \,\text{MV}\,\text{m}^{-1}$, multipactor in the equatorial plane. CST simulation, Nb baked (according to SPARK3D, no multipactor at this $E_{\rm acc}$!).

Figure 5: $E_{\rm acc} = 20 \text{ MV m}^{-1}$, multipactor at single point. CST simulation, Nb baked.

TEEY at low energies shall be measured

Figure 6: Top: TEEY as a function of electrons impact energy. Bottom: distribution of electrons impact energies.

H. Piel. Superconducting cavities. Tech. rep. Hamburg, Germany: CERN, 1988, pp. 149–196

TEEY at low energies shall be measured

Figure 6: Top: TEEY as a function of electrons impact energy. Bottom: distribution of electrons impact energies.

H. Piel. Superconducting cavities. Tech. rep. Hamburg, Germany: CERN, 1988, pp. 149–196

TEEY at low energies shall be measured

Figure 6: Top: TEEY as a function of electrons impact energy. Bottom: distribution of electrons impact energies.

H. Piel. Superconducting cavities. Tech. rep. Hamburg, Germany: CERN, 1988, pp. 149–196

Conclusions and future work

- Collaboration CERN-IJCLab-LPSC:
 - CERN: cavity design, multipactor measurements;
 - IJCLab: electron emission measurements;
 - LPSC: multipactor simulations;
- multipactor barriers can be processed through by conditioning (*cleaning*) the surfaces;
 - \rightarrow preliminary results;
- multipacting studies on TESLA and two-cell 600 MHz SWELL cavities.

Thanks for your attention!

Questions?

Appendix

Parameter	Value
f [GHz]	1.3
$R/Q[\Omega]$	122.9
$L_{ m acc}$ [mm]	115.3
$E_{ m pk}/E_{ m acc}$	2.01
$B_{ m pk}/E_{ m acc}$	4.61
G [Ω]	265.56
$E_{\rm acc}$	$>15 - 18 \text{ MV m}^{-1}$
Q_0	$>3 \times 10^{8}$

France, Peauger et al. "The SWELL cavities program: The SWELL cavity development plan". In: FCC Week 2022. Paris, 11/12 France, 2022

Definition of the Total Electron Emission Yield

$$\approx 10^{-8} - 10^{-9} \text{ m}$$

Figure 7: Sample irradiated by an electron flux. It emits a flux of electrons in reaction.

Definition of the Total Electron Emission Yield

$$\approx 10^{-8} - 10^{-9} \text{ m}$$

Figure 7: Sample irradiated by an electron flux. It emits a flux of electrons in reaction.

• Total Electron Emission Yield (TEEY) is the number of emitted electrons per incident electron;

 \rightarrow TEEY = 2 in Fig. 7.

Definition of the Total Electron Emission Yield

$$\approx 10^{-8} - 10^{-9} \text{ m}$$

Figure 7: Sample irradiated by an electron flux. It emits a flux of electrons in reaction.

• Total Electron Emission Yield (TEEY) is the number of emitted electrons per incident electron;

 \rightarrow TEEY = 2 in Fig. 7.

- extremely important to characterize multipactor
 - \rightarrow TEEY > 1 is a necessary condition for multipactor apparition.