

Collimator model & FCC-ee impedance model

Mostafa Behtouei

INFN-LNF, on behalf of FCC group

E. Carideo, M. Migliorati, B. Spataro and M. Zobov

Acknowledgements: M. Boscolo, D. De Arcangelis, A. Abramov and all the collimation group November 2022

Motivation

Why is the FCC project important? FCC-ee main parameters

- Main impedance sources
 Resistive wall, Bellows, Collimators
- Collimators

Why Collimators are so important? Why do we need numerical simulations?

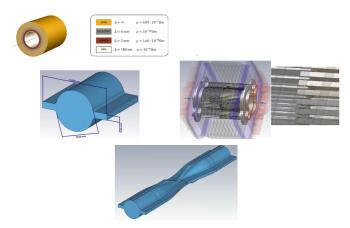
- How CST works (Wakefield Solver Overview)
 Wake fields and impedances calculations
- How ECHO3D works? (Wakefields calculations)
- Wake potential calculations of Collimator (ECHO3D and CST)
- Validation of the results
 - 1- Comparing the results of ECHO3D with CST (long bunch)
 - 2- Convolution method (short bunch)
- Preliminary and updated tables of collimation system
- Total impedance Longitudinal, transverse dipolar and quadrupolar
- Summary

FCC-ee main parameters

- FCC-ee is a highest-luminosity Higgs and electroweak factory energy-frontier electron-positron collider spanning the energies from 45 to 183 GeV.
- This circular lepton collider allow us to study the Z, W, Higgs and top particles with high precision.
- INFN/Sapienza together with CERN, DESY and SLAC are responsible for establishing a complete impedance budget for collider, booster and evaluate single-beam collective effects for different modes of operation.

Layout		PA3	1-1.0		
	Z	WW	ZH	tî	
Circumference (km)		91.174	117 km		
Beam energy (GeV)	45.6	80	120 182.5		
Bunch population (10 ¹¹)	2.53				
Bunches per beam	9600	880	248	36	
RF frequency (MHz)		400		400/800	
RF Voltage (GV)	0.12	1.0	2.08	4.0/7.25	
Energy loss per turn (GeV)	0.0391	.37	1.869	10.0	
Longitudinal damping time (turns)	1167	217	64.5	18.5	
Momentum compaction factor 10 ⁻⁶	28	3.5	7.33		
Horizontal tune/IP	55.	563	100.565		
Vertical tune/IP	55.	600	98.595		
Synchrotron tune	0.0370	0.0801	0.0328	0.0826	
Horizontal emittance (nm)	0.71	2.17	0.64	1.49	
Verical emittance (pm)	1.42	4.34	1.29	2.98	
IP number			1		
Nominal bunch length (mm) (SR/BS)*	4.37/14.5	3.55/8.01	3.34/6.0	2.02/2.95	
Nominal energy spread (%) (SR/BS)*	0.039/0.130	0.069/0.154	0.103/0.185	0.157/0.229	
Piwinski angle (SR/BS)*	6.35/21.1	2.56/5.78	3.62/6.50	0.79/1.15	
ξ_x/ξ_y	0.004/0.152	0.011/0.125	0.014/0.131	0.096/0.151	
Horizontal β^* (m)	0.15	0.2	0.3	1.0	
Vertical β^* (mm)	0.8	1.0	1.0	1.6	
Luminosity/IP (10 ³⁴ /cm ² s)	181	17.4	7.8	1.25	

^{*}SR: syncrotron radiation, BS: beamstrahlung


Main impedance sources

Main impedance sources (so far)

Resistive wall: It is the largest impedance source for FCC-ee evaluated so far. NEG coating is needed to mitigate the electron cloud build-up in the positron machine and for pumping reasons in both rings.

Bellows: They represent the second highest impedance source so far. We have used an upper pessimistic estimate of 20000 bellows

Collimators: Being close to the beam orbit they may introduce large impedance

Collimators are used in storage rings and accelerators

What are the objectives of collimators?

- To remove high amplitude particles from the transverse profile of the beam
- To reduce the uncontrolled beam loss from the lost particles originating from beam tails
- Act as shielding for the remainder of the accelerator structures by minimizing the production and leakage of secondary radiation

Collimator issues

- Being close to the beam orbit they may introduce large impedance
- This impedance perturbs the beam motion downstream of the collimator
- ullet Longitudinal wakefields o change the energy distribution and lengthen the bunch
- ullet Transverse wakefields o increase the beam emittance, shift the betatron tune and decrease beam life time

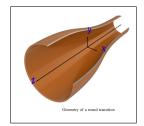
In order to estimate the impact of these effects, the geometric and resistive wall wakefields must be investigated.

Why do we need numerical simulations?

From Maxwell's equations (equation for the high frequency impedance of tapered transitions)

$$(\nabla^2 + \partial_{zz} - c^{-2}\partial_{tt})\mathbf{E} = 4\pi\nabla\rho + \frac{4\pi}{c^2}\partial_t\mathbf{j}$$
 (1)

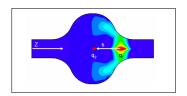
Solution: None


From Maxwell's equations (equation for the low frequency impedance of tapered transitions)

$$(\nabla^2 + \partial_{zz})\mathbf{E} = 4\pi\nabla\rho \tag{2}$$

Solution by Stupakov (by considering the two-dimensional Poisson equations with Dirichlet boundary conditions):

$$Z_{\parallel}^{d} = -\frac{2x_{1}x}{c} \left(\frac{1}{a_{1}^{2}} - \frac{1}{a_{2}^{2}}\right) - 2ix_{1}x \frac{k}{c} \int \frac{(a')^{2}}{a^{2}} dz \quad (3)$$


$$Z_{\perp}^{d} = \frac{2x_{1}}{\omega} \left(\frac{1}{a_{1}^{2}} - \frac{1}{a_{2}^{2}} \right) - 2\frac{ix_{1}}{c} \int \frac{(a')^{2}}{a^{2}} dz \qquad (4)$$

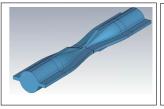
How CST (Wakefield Solver) works? (Wakefields and impedances calculations)

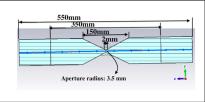

- The wakefield solver calculates the wake-potentials for a given structure from electromagnetic fields.
- Wakefield problems are driven by a bunch of charged particles, which is passing the observed structure parallel to a main coordinate axis
- These particles cause electromagnetic fields, which are calculated with a time domain solver.
- The Fourier transform is normed such that the unitarity is given or Parseval's identity is fulfilled:

$$\int_{-\infty}^{\infty} |c(t)|^2 dt = \int_{0}^{\infty} |C(\omega)|^2 d\omega$$
 (5)

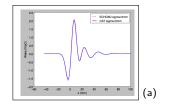
How ECHO3D works? (Wakefields calculations)

- Code ECHO3D calculates in time domain the electromagnetic fields generated by an electron bunch passing through arbitrary three dimensional chamber.
- The structure can consist of several materials with different permeabilities and permittivities.
- The bunch form is a Gaussian pencil bunch.
- Moving mesh (Field monitor of type s-time OR Field monitor of type x-time)

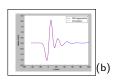

(Field monitor of type s-time



(Field monitor of type x-time)


Wake potential

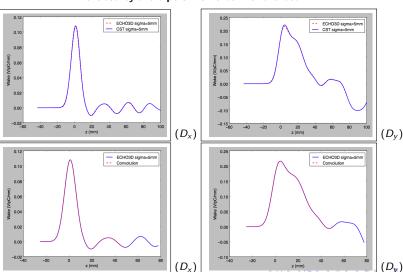
Collimator original shape (SuperKEKB model, thanks to Takuya Ishibashi) proposed by Mauro Migliorati



Geometric longitudinal wake potential of a 5 mm Gaussian bunch (ECHO3D Vs. CST)

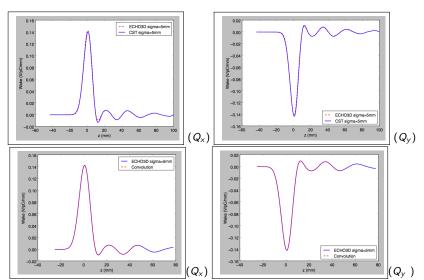
Convolution vs CST (suggested by Mauro Migliorati)

Longitudinal wake potential of a distribution

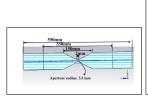

$$W_{||} = -\frac{U(z)}{qe} = \frac{1}{q} \int_{-\infty}^{\infty} \omega_{||}(z'-z)\lambda(z')dz'$$
 (6)

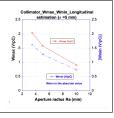
where $q = \int_{-\infty}^{\infty} \lambda(z) dz$

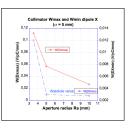
Dipole Wake Potential


Geometric transverse dipolar wake potential of a 5 mm Gaussian bunch (ECHO3D Vs. CST) and its convolution

The transverse wake is due to the excitation of dipole modes. These modes are excited by the dipole momentum of the beam.



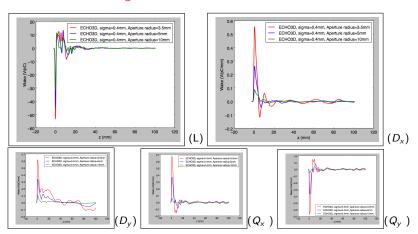

Quadrupole Wake Potential


Geometric transverse quadrupolar wake potential of a 5 mm Gaussian bunch (ECHO3D Vs. CST) and its convolution

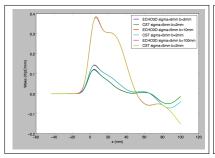
Collimator optimization

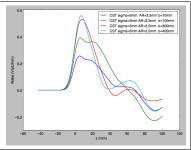
Longitudinal, transverse dipolar and quadrupolar wake potentials of a 5 mm Gaussian bunch (ECHO3D) for different aperture radii of the collimator (3.5mm, 5mm, 10mm)

[R _a [mm]	[max,min] W_L^*	[max,min] (<i>W_{Dx}</i>)**	[max,min] (<i>W_{Dy}</i>)**	[max,min] (W _{Qx})**	[max,min] $(W_{Qy})^{**}$
ſ	3.5	[2.045,-1,623]	[0.112,-0.012]	[0.224,-0.101]	[0.141,-0.014]	[0.014,-0.141]
Ī	5	[1.587,-1.282]	[0.057,0.003]	[0.123,0.002]	[0.088,0.013]	[0.013,-0.088]
[10	[0.903,-0.749]	[0.027,-0.0028]	[0.289,0.014]	[0.010,0.002]	[0.002,-0.010]


^{* [}V/pC]

Ra: Aperture radius




^{**[}V/pC/mm]

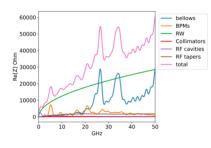
Echo3d: it takes 4 hours for every simulation. CST: there is no enough resources to do such simulations for the short bunches

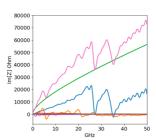
Transverse dipolar wake potentials of a 5 mm Gaussian bunch (ECHO3D) for different aperture lengthes of the collimator (2mm, 10mm, 100mm)

Collimation system

Summary of the collimator settings for the Z mode and for the 4 IP layout. The table includes both betatron and off-momentum collimators. The synchrotron collimators and masks upstream the IP are not included in the table. The length of these collimators is much longer than the SuperKEKB model (0.3 - 0.4 m) instead of few mm))

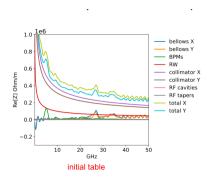
Preliminary table of collimation system

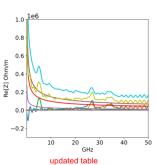

#collimator	type	length[m]	half-gap[m]	material	plane	offset x[m]	offset y[m]	beta x [m]	beta y [m
top.h.bl	primary	0.4	0.005504	MoGR	H	0.0	0.0	352.578471410311295	113.054109500623440
tcp.v.bl	primary	0.4	0.000992	Mogr	v	0.0	0.0	329.331023390820064	163.921790515995099
tcs.hl.bl	secondary	0.3	0.004162	Mo	H	0.0	0.0	144.372060225234833	936.118623285785816
tcs.vl.bl	secondary	0.3	0.002159	Mo	v	0.0	0.0	406.501047352056446	576.026918367956227
tcs.h2.bl	secondary	0.3	0.005956	Mo	H	0.0	0.0	295.623449812136869	1419.37510613787344
tcs.v2.bl	secondary	0.3	0.000974) Mo	v	0.0	0.0	736.253284828415531	117.301450420286400
tcp.hp.bl	primary	0.4	0.005755	MoGR	H	0.0	0.0	55.469636601816113	995.306256172161511
tcs.hpl.bl	secondary	0.3	0.01649	Mo	B	0.0	0.0	373.994993388812532	377.277726493928981
tcs.hp2.bl	secondary	0.3	0.011597	Mo	H	0.0	0.0	184.970621310328227	953.229862066088458


Updated table of collimation system

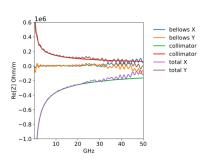
name	type	length[m]	nsigma	half-gap[m]	material	plane	angle[deg]	offset_x[m]	offset_y[m]	beta_x[m]	beta_y[s
tcp.h.bl	primary	0.4	11.0	0.005504	MoGR	H	0.0	0.0	0.0	352.578471	113.05411
tcp.v.bl	primary	0.4	65.0	0.002332	MoGR	V	90.0	0.0	0.0	147.026106	906.2828
tcs.hl.bl	secondary	0.3	13.0	0.004162	Mo	H	0.0	0.0	0.0	144.372060	936.1186
tcs.vl.bl	secondary	0.3	75.5	0.00203	Mo	v	90.0	0.0	0.0	353.434125	509.3204
tcs.h2.bl	secondary	0.3	13.0	0.005956	Mo	H	0.0	0.0	0.0	295.623450	1419.3751
tcs.v2.bl	secondary	0.3	75.5	0.002118	Mo	v	90.0	0.0	0.0	494.235759	554.0558
tcp.hp.bl	primary	0.4	29.0	0.005755	MoGR	H	0.0	0.0	0.0	55.469637	995.3062
tcs.hpl.bl	secondary	0.3	32.0	0.01649	Mo	H	0.0	0.0	0.0	373.994993	377.2777
tos.hp2.bl	secondary	0.3	32.0	0.011597	Mo	H	0.0	0.0	0.0	184.970621	953.2298

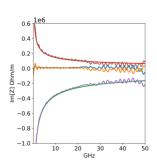
Total impedance: longitudinal


Total impedance: longitudinal

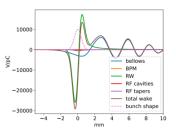


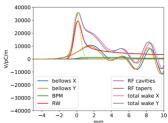
Total impedance: transverse dipolar


Total impedance: transverse dipolar



Total impedance: transverse quadrupolar


Total impedance: transverse quadrupolar



Wake potential of 0.4 mm Gaussian bunch

Wake potential of 0.4 mm Gaussian bunch

Summary and future works

- We calculated the wake potential of the FCC collimators (ECHO3D and CST) and validated the results
- We calculated the total impedance of the machine elements (longitudinal, transverse dipolar and quadrupolar)
- We will continue the work for the evaluation, reduction and optimization of the impedances of the main machine elements (e. g. bellows, collimators system)
- Analytical method to calculate wake potential for short bunch from long one by using the operation inverse to convolution (deconvolution method)

Thanks for your attention