

1

FCCIS - The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

High Energy Booster Studies

B. Dalena, A. Chance, T. Da Silva (CEA)

A. Mashal (IPM), T. Raubenheimer (SLAC), E. Howling, R.L. Ramjiawan, F. Zimmermann (CERN)

Thanks to:

B. Haerer, L. Van Riesen-Haupt, T. Charles, R. Tomas, T. Persson, F. Antoniou, O. Etisken, M. Zampetakis, S. Bettoni, M. Hofer, F. Carlier, B. Holzer, A. Franchi, A. Latina, K. Oide, S. Farthoukh

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

- \triangleright The injector complex
	- Layout of the High Energy Booster (HEB)
- \triangleright Optics design
	- Arcs
	- Insertions
- \triangleright Injection energy and emittances
	- Dynamic Aperture (DA) and Momentum Acceptance (MA)
- \triangleright Correction of imperfections and definitions of tolerances
- \triangleright Emittance evolution and booster operations
- \triangleright Perspectives

Injectors complex

FUTURE \overline{AP} **COLLIDER**

Injection energy into the booster **20 GeV** (or lower ?)

Ramping: **80-100 GeV / s (< 1 s)**

Alternatives: SPS as Pre Booster Ring (**PBR**) and a **Linac**

Booster layout (after CDR)

FUTURE CIRCULAR COLLIDER

 (0)

 (a)

- Booster **layout updated** to follow the last collider survey version.
- In the current booster version, **cavities are located in sections H and L.** Alternative all **RF system** of the Booster placed in **L** or **F**. **Proposal of the RF group to use 800 MHz only for all mode of the Booster:<https://indico.cern.ch/event/1064327/contributions/4888581/> (F. Peauger)**
- **Bypass of the booster near the detector still under investigation.**
- Booster on top of the collider or on the outside.

60°/60° Optics for Z and W modes

 \Rightarrow Very challenging **low** dipole field at injection

• FODO cells of ~52 m

• Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.4 m Distance between quadrupole and sextupole: 0.165 m Distance between dipole and sextupole: 0. 504 m Distance between quadrupole and dipole: 0.869 m (it includes space for BPM and dipole correctors)

dipoles = 2×2944

quadrupoles = 2944

sextupoles = 2632/6

90°/90° Optics for H and ttbar modes

- FODO cells of ~52 m
- Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.4 m Distance between quadrupole and sextupole: 0.165 m Distance between dipole and sextupole: 0. 504 m Distance between quadrupole and dipole: 0.869 m (it includes space for BPM and dipole correctors)

dipoles = 2×2944

quadrupoles = 2944

sextupoles = 2632/4

 Very challenging **low** dipole field at injection (preliminary magnet design by **J. Bauche** @ FCC week 2022 <https://indico.cern.ch/event/1064327/contributions/4888487/>)

FCC-ee Booster Studies – FCC France- Italy workshop Barbara Dalena 22/11/2022

Equilibrium emittances

FUTURF

• Booster rms emittance at extraction ≤ collider

- \Rightarrow 90°/90° required for H and ttbar final emittances
- \Rightarrow 60°/60° retained for Z and W operation (mitigation of MI and IBS)
- **90°/90° 100 m cell** could gain a bit in momentum compaction at Z & W

Injection/ extraction in the High Energy Booster

First optics design

- Injection scheme with orbit bump and thin electrostatic septum
- Possibility to have vertical injection to be studied

R. L. Ramjiawan & E. Howling

FUTURE

CIRCULAR **COLLIDER**

• Extraction scheme with 10 kickers allows for some machine protection

• Room for optics optimization of both injection and extraction

FCC-ee Booster Studies – FCC France- Italy workshop Barbara Dalena 22/11/2022 8

DA at injection (20 GeV) with multipole errors

FUTURE COLLIDER

Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be \leq 5×10⁻⁴

Dynamic Aperture defined as

Stable initial amplitude @ 4500 turns (~15% *tx* 20 GeV)

Courtesy of F. Zimmermann and Jie Gao

relative values ω R = 26 mm

 $\Delta p / p$

91km 60°/60° optics $\beta_x = 83.2 \text{ m } \beta_y = 32.2 \text{ m } D_x = 0 \text{ m}$ Geometric emittance injected 1.27 nm

DA of 91km **90°/90° optics** is **~ 5mm** (due to synchro-betatron resonances)

DA and MA improvement

- COLLIDER
- Investigating alternative sextupoles schemes with 4 non-inteleaved sextupole families. Better 2nd order chromaticity but higher anharmonicity.

180°

▶ Using odd Defocusing Sextupole families to optimize Resonance Driving Terms, in particular the candidate terms of driving synchro-betatron resonances.

A. Mashal

Static magnets imperfections

Orbit correction only Statistics on 100 seeds

Dipole relative field error 10^{-4}

Main dipole roll error 1999 and

EXA Define pre-alignment tolerances of the elements and the **T. Da Silva** orbit correctors specifications + establish a correction procedure for orbit correction for the FCC-ee high energy booster.

Error type Value

Offset quadrupoles 160, 80, 90, 100, 120, 150 and 200 µm

Offset BPMs 60, 80, 100, 150 and 200 µm

Offset sextupoles 60, 80, 100, 120, 150 and 200 µm

ý

First pre-alignment and correctors specs

- First specifications of the main **magnets misalignment** of the High Energy Booster arcs cells ≃ **150 μm**
- First definition of the **orbit correctors** for the booster $\simeq 20$ mT
- In order to preserve transverse emittances need to able to correct also beta-beating, dispersion and coupling (**emittance tuning**)

T. Da Silva

Injectors parameters and Booster cycle time C22

Emittance evolution and booster operation

The cycle time and emittance reach of the Booster depends on the beam emittance at injection in the booster ring, on the ramp time, on the ramp structure and on the lattice damping time

- At **Z mode**: optimization of cycle time to be able to reach target vertical emittance at extraction of the Booster
	- Solution with the wiggler discarded
	- Adding **extra time at extraction** preferred
	- Two dipoles families: under investigation
- \blacktriangleright To do:
	- Optimization of RF Voltage at injection and extraction
	- Impact of mis-matched bunch length at injection into the Booster (taking into account collective effects)
	- Impact on beam dynamics of the 800 MHz RF system vs 400 MHz + 800 MHz (baseline)

Energy ramp

Thanks to **M. Zampetakis, F. Antoniou, O. Etisken** for IBS

LINAC parameters: **S. Bettoni, A. Latina, A. Grudiev, P. Craievich**

Conclusions & Perspectives

- Optimization of layout and booster positioning in the tunnel
- Two options to bypass the experimental areas inside or outside detector

Improve DA and MA for the 90°/90° optics

- Resonance Driviting terms optimization
- Optimisation strategy for sextupoles families (MOGA, ML,…) ?
- Different Arc cell ?

Optics:

HEB operation and emittance evolution

- Optimization of cycle time at Z
- Effect of mis-matched beam at injection
- Optimization of RF Voltage at injection and extraction
- Study the 800 MHz RF system against 400 MHz + 800 MHz
- **First definition of the orbit correctors for the booster (**≃ **20 mT) and orbit correction scheme. First specifications of elements misalignment (150 μm)**
	- Finalize the emittance tuning studies
	- Integration with DA and MA and Overall Design optimization (exploiting AI)

Finalize injection/extraction in the High Energy Booster (CERN)

FUTURF

COLLIDER

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

First requirements for beam instrumentation

- First tolerance studies for BPM **resolution** in the arcs
	- \Rightarrow 50 µm rms distribution over ~3000 BPMs
- We should be able to **measure the current of each bunch** with a precision better than 20 pC (less than 1% of the bunch charge).

We should be able **to measure the emittance of the bunches** at the extraction.

- At extraction, we should be at equilibrium and bunch properties should be roughly the same from bunch to bunch (especially for other modes than Z).
- Because of the interplay of damping and IBS during the accumulation, the bunch properties are not the same from bunch to bunch: beam emittance, beam size and bunch length vary from bunch to bunch.

COLLIDER

1. x plane: first BPM of the arc, the 2 CORRs before the beginning of the arc to the **3** BPMs and CORRs after the end of the arc.

1. If QP focusing \rightarrow following BPM reads and CORR corrects in horizontal plane. 2. If QP defocusing \rightarrow following BPM reads and CORR corrects in vertical plane.

- 2. y plane: first BPM of the arc, the 2 CORRs before the beginning of the arc to the **2** BPMs and CORRs after the end of the arc.
- 3. Sextupoles are turned off. SbS correction and several SVD corrections behind.
- 4. Sextupoles are turned on. 1 final SVD corrections behind.

2. Choice CORRs and BPMs for the segment by segment (SbS):

Orbit correction procedure

1. Definition of CORRs and BPMs:

Orbit with errors (before

Mettere mie slides

Orbit after SbS correction Crbit after final correction

RF insertions

- Currently, the cavities are inserted in the insertions H and L.
- The cell FODO length in the RF insertion is 104 m.
- **400 MHz** cryomodule length: 11.4 m **800 MHz** cryomodule length: 7.5 m

- Z mode: 2 CM left, 1 CM right of IPL
- W mode: 7 CM left, 6 CM right of IPL
- H mode: 17 CM left, 17 CM right of IPL
- tt mode: 17 CM left, 17 CM right of IPL
- \triangleright All RF systems of the Booster installed in the same insertion (H or F) \Rightarrow optimize the cost of the infrastructures
- **Proposal** of the **RF group** to use **800 MHz only** for all mode of the Booster: <https://indico.cern.ch/event/1064327/contributions/4888581/> (**F. Peauger**)

FUTURF

COLLIDER

tt mode: 60 CM left, 60 CM right

Errors and statistic

Mettere mie slides

**FUTURE
CIRCULAR**

COLLIDER

Result Example Orbit: 122 offset quad, dipole field err & dipole roll, offset BPMs

FUTURE $\overline{\mathsf{A}}$ $\overline{\mathsf{R}}$ **COLLIDER**

Mettere mie slides

Mettere tabella piu' beta-beat piu' conclusion presentazione tatiana

Emittances evolution: accumulation + ramp

We consider the Z mode:

- We accumulate in the booster for 24 s
- We ramp from 20 GeV to 45.6 GeV for 1.2 s.

The injection is from the LINAC at 20 GeV:

- Normalized emittance of **50 µm**.
- Energy spread of **0.1%**
- Bunch Length of **1 mm**
- 2.53e+10 particles per bunch (**4 nC**)
- ▶ The IBS is not negligible during accumulation process (equilibrium emittance at 20 GeV not reached).
- The beam parameters **(emittance and energy spread)** vary from a bunch to another**.** The collider **energy spread might be not reached** at **extraction energy.**

 \Rightarrow **bunch length > 1 mm** from the LINAC preferred

Thanks to M. Zampetakis, F. Antoniou, O. Etisken for **IBS**

Emittances evolution: ramp

Z mode:

- No accumulation (i.e. last bunch injected)
- We ramp from 20 GeV to 45.6 GeV for 1.2 s.

The injection is from the linac at 20 GeV:

- Normalized emittance of **50 µm**.
- Energy spread of **0.1%**
- Bunch length of **1 mm**
- 2.53e+10 particles per bunch (**4 nC**)
- **Acceleration time is short enough to see no IBS effect.**
- **Synchrotron integral I2 is too small to reach collider parameters within 1.2 s.**

FUTURE

COLLIDER

Possible solutions (1/3): Damping Wiggler B. Haerer, T. Tydecks https://arxiv.org/abs/2111.14462

Target damping time 0.1 s (to fulfill cycle time) Wigglers reduce damping time and increase eq. emittance :

A **normal conducting wigglers** foreseen \Rightarrow **can be further optimized** for poles length and for number of poles

Hor. Emittance (60° optics) 1.7 nm @ 45.6 GeV

 \Rightarrow it **should be switched off** during acceleration or parallel line with a fast kicker should be designed

Total length of installed wigglers is of the > **100 m** in the **same straight line**

 Possible stimulated **additional radiation** and **instability** (like in FEL) to be studied

Hor. damping time

Hor. emittance $(60°\text{ optics})$

 $104 \,\mathrm{ms}$

300 pm rad

FUTURF

COLLIDER

Possible solutions (2/3): 2s at extraction energy Tor Raubenheimer

Add 2 seconds after the energy ramp at extraction energy

Pros: no change to the optics design

Cons: small increase Booster Cycle time

FUTURE

COLLIDER

UI AR

Possible solutions (3/3): change I2 integral & ramp time

FUTURF

Simple model with synchrotron radiation only

- Injection energy 20 GeV
- Injection rms emittance **0.2-1.3 nm**
- Energy injection + ramp + extraction ~**1.2 s**
- **4I2 (4I5)** synchrotron radiation integrals
- \cdot dE/dt = 40 GeV/s
- $k = 2 \times 10^{-3}$

$$
\frac{d\varepsilon_x}{dt} = -2 \frac{\varepsilon_x - \varepsilon_{eq}(E(t), I2, I5)}{\tau_x(E(t), I2)}
$$

$$
\frac{d\varepsilon_y}{dt} = -2 \frac{\varepsilon_y - k \varepsilon_{eq}(E(t), I2, I5)}{\tau_x(E(t), I2)}
$$

Possible solution :

- 2 dipoles with two different curvatures, proposed for the electron-ion collider (EIC)
- Damping time can be reduced by playing on the ratio between the two different fields.

2 dipoles families optics

FUTURE COLLIDER

- 4×12 can be obtained with L2 ~5,5 m, B2~-128 G, B1 ~128 G at 20 GeV (to be compared with B~71 G with one single magnet family),
- Minimum dipole field at injection \sim 2xpresent lattice
- Momentum compaction \sim 1.8 10⁻⁵ (\sim 60 \degree /60 \degree lattice)
- Variation of the path length difference below 5 mm
- Difference between the different orbits in the dipoles of 5 mm

Advantages:

- Increase I2 without damping wigglers
- **Higher dipole field at injection** energy (useful for all modes and maybe possibility to lower injection energy)

Drawbacks:

- Different reference orbits **reduction of beam stay clear?**
- **Change of path length should be followed by RF during acceleration…** (Oide)
- **More synchrotron** radiation and in **opposite direction** of foreseen absorber (at injection) **vacuum quality to be investigated**

