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Galaxy Clusters

- Describe the latest evolution of the Universe

- Most massive bound systems with 

- , last step of hierarchical structure formation process

- Formed from the growth of small density inhomogeneities

- By the accretion and merging of smaller structures

M ∈ 1013 − 1015 M⊙
z < 2

Cosmological simulation

Credits: Klaus Dolag (Gadget code)

- Good candidates to trace the matter content in the universe

- Multi-component systems


- Dark matter ( 80%) and baryonic matter

- Multi-wavelength objects (optical, near-IR, mm, X-ray)

- Laboratories to study the co-evolution of the dark and the baryonic 

matter

- At larger scales, lie at the intersections of the cosmic web filaments

∼
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Cosmology with galaxy cluster abundance

The abundance of galaxy clusters


- Geometry + growth of structures in the Universe

- Count clusters a function of redshift and mass





- Depends on:

- Halo Mass Function


- Matter content 

- To the amplitude of matter density fluctuation 

- Formation history : growth rate over cosmological 

time  

Nth = Ωs ∫
z2

z1

dz∫
m2

m1

dm
dn(m, z)

dm
d2V(z)
dzdΩ

Ωm
σ8

σ8(z)

cluster regime

 z = 0

 z = 0.6

- Volume

- Background cosmology

- , sensitive to late time expansion history of 

the Universe, led by dark energy e.o.s
z < 2
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Surveys Start Wavelengths CL Analysis Number of clusters

ACT 2007 mm 2013 68 (2020: > 4000)

WtG (ROSAT) 2000 X-rays 2014 224

Planck 2009 mm 2015 439 (all: 1653)

SPT 2007 mm 2016 343

SDSS 2000 Visible 2019 25 000

KiDs 2011 Visible 2020 3 652

DES 2013 Visible 2020 7 000

eROSITA 2019 X-rays 2022 455 (all: 100 000)

Rubin LSST 2023 Visible > 100 000

Euclid 2023 Visible, near IR > 100 000

S0 2023 mm 16 000

WFIRST 2026 Visible, near IR 40 000

CMB-S4 2029 mm 100 000

Roman 2027 Blue, near IR 23 000

‣ An order of magnitude in observed clusters 
with next-generation surveys


- From  to  clusters

- Increase in size + in depth

- Large statistical power + need of significant 

improvement in control of systematics (e.g. 
synergy space/ground experiments for WL mass 
calibration)

103−4 105

‣ Cluster abundance

- Probes CDM ( ) as well as extensions


-  CDM

- Massive neutrinos 

- Primordial Non-Gaussianity

- Testing gravity on large scales  modified 

gravity scenarios, …

Λ Ωm, σ8
w

∑ mν

→

Cluster abundance cosmology overview

Cosmology with galaxy cluster abundance
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Basic recipe for cluster abundance cosmology 

- From a galaxy cluster survey with known redshifts, masses

- Count the number  of galaxy clusters within bins of redshift and mass

- Posterior of cosmological parameter

⃗N obs

Likelihood = ℒ( ⃗N obs | ⃗θ )

-  at arbitrary cosmology

- Statistics


- Count of discrete objects in bins  Poisson sampling


- Fluctuation + clustering of the matter density field  Gaussian contributions


- Non-linear physics of halo formation  More complications

⃗N th

→
→

→

p( ⃗θ | ⃗N obs) = π( ⃗θ ) ℒ( ⃗N obs | ⃗θ )

Cosmology with galaxy cluster abundance
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Cluster abundance covariance matrix

σ2( ̂N ) = N + σ2
sample(N )

correlation between M-z bins

Clustering + fluctuation of matter density field (within/beyond survey volume) = sample covariance

Computed with PySSC (Lacasa et al. 2021) + CCL (Chisari et al. 2018)

Additive variance
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Likelihoods for cluster count cosmology

Likelihoods

- Ideally should describe completely abundance statistics

- There exist approximations

- Poisson likelihood (Planck, 2015  clusters)

- Accounts for Poisson sampling 

- Does not account for sample covariance

- Valid for low number of clusters, Shot Noise > Sample variance

∼ 500

- Gaussian likelihood (DES, 2021  clusters)

- Sample covariance

- Limited to continuous approximation 

- Valid for high number of clusters, Shot Noise  Sample variance

∼ 7000

∼

- Gauss-Poisson Compound (GPC) (KiDS, 2021  clusters)

- Takes into account both Poisson sampling and sample covariance (Hu & Kravtsov, 2003)

- Computationally expansive to compute


- Multidimensional integral 


- More precise, can we gain cosmological information?

∼ 4000

ℒ( ̂N | ⃗θ ) ∝ ∫ d ⃗x 𝒩[ ⃗x | ⃗N (θ)] ×
n

∏
k=1

𝒫[ ̂N k |xk]
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Likelihoods for cluster count cosmology

Single variate likelihood ℒ(n |Nth)

Nth ≈ 3 Nth ≈ 19 Nth ≈ 1280
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Accuracy of likelihoods for cluster abundance cosmology

Bias on parameter inference

- Deviation from the latent likelihood may bias results


- Data covariance matrix is incorrect*

- Inferred posteriors will be incorrect


- The latent likelihood is not Gaussian**

- Can shift posteriors


- In our case:

- Latent likelihood is not Poisson, Gaussian, or Gauss-Poisson Compound

- Halo model is an approximation


- Most robust constraints with analysis likelihood closest to latent one

*Dodelson, Schneider 2013, Percival et al. 2022

**Sellentin, Heavens 2018 for cosmic shear

Using simulations to test cluster abundance likelihoods

- Likelihood: statistical properties of the data at input cosmology

- With multiples simulations, can have access to “true” statistics of abundance
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Framework for testing the accuracy of likelihoods

We use a set 1000 simulated dark matter halo catalogs

- PINOCCHIO algorithm (Monaco et al., 2013)

- Planck cosmology 

- Masses calibrated on known halo mass function (Despali et al., 2015)

- Euclid-like sky area  ¼ of full-sky

-  halos per simulation

-

∼
∼ 105

M > 1014 M⊙

Abundance likelihood can be estimated from counts over the 1000 cosmological simulations
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Framework for testing the accuracy of likelihoods

Methodology

1. Estimate the posterior for each of the 1000 

Pinocchio mocks

2. Biases ? Compare the mean of each 

posterior to input cosmology

3. Robustness of errors ? Compare individual 

posterior dispersion  to the spread of 
posterior means  (ensemble dispersion/
variance)

σind
σens

Dispersion of the set of  
posterior means σens

Individual posterior 
dispersion σind

σ2
ind → C ind

σ2
ens → Cens

More than 1 parameter: compare covariances 

Individual parameter covariance

Ensemble parameter covariance

Toy model



/23
Constantin Payerne, testing likelihood accuracy for cluster count cosmology 14

Why comparing individual errors to the spread of means ?

- Likelihood and posterior are not always gaussians

- Rather closeness between individual errors and ensemble error

- Used as a metric to test likelihood accuracy

- Robust constraints ? 

- Reasonable request: For each simulation, the recovered error should be representative 

of the spread of recovered parameters over many realisations of the “Universe”

Gaussian likelihood

- Latent likelihood  and analysis likelihood 

- Two data covariance matrices 

ℒX ℒY
ΣX and ΣY

Using correct likelihood Cens = C ind

- If  

- Then  

-  is not sufficient to forecast likelihood accuracy


-  can be forecasted 


- Example:  <  then we have 

ΣX ≠ ΣY
Cens ≠ C ind

CFisher

Cens Cens
αβ = (CFisherN,)T

αΣ−1
Y ΣXΣ−1

Y (CFisherN,)β ≠ CFisher
αβ

ΣYii ΣXii C ind
αα < Ccorrect

αα < Cens
αα

- If  

- Then 

- Likelihood accuracy can be forecasted (Fisher formalism)  

ΣX = ΣY
Cens = C ind

→ CFisher
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Framework for testing the accuracy of likelihoods

Study limited to idealised halos 

- Ideal setup: individual “true” masses

- Real data: proxy-selected clusters 

- Limited by knowledge of mass-proxy relations 

+ detection efficiency

- Increase error of cosmological parameters
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Cosmological inference setup

Redshift bins Mass bins # of bins Average # N/bin

#1 4 4 16 5000
#2 20 30 600 150
#3 100 100 10 000 10

- The Poisson, Gaussian and GPC likelihood are approximations 

Poisson sam
pling

Sam
ple Variance

 cosmological constraints ! Importance sampling (efficient for 2 parameters)∼ 104

Methodology: Test accuracy of likelihoods for various regimes


For each likelihood

1.  for each PINOCCHIO simulation

2. For 3 binning schemes 

P(Ωm, σ8 | ⃗N obs)

- Valid:

- At linear scales (clusters are biased tracers of the density field)

- For given shot noise/sample (co)variance relative importance


- binning scheme of the mass-redshift plane

- Sky survey area (Shot noise, sample (co)variance )∼ Ω
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Results: (4 redshift bins)x(4 mass bins) case

Histograms of 1000 means 


- Scatter around input cosmology

- Validate the modelling input
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Results: all binning scheme

Bias on the posterior mean


(black) Spread of posterior means

(red) Error on the mean ( )


- Small constant bias between input and 
recovered cosmology


- Accuracy of the underlying halo model

- Not due to 2-point statistics (Poisson 

does not depends on it)

- Numerical error

× 1/ 1000

Small bias on recovered cosmology (sub-percent)
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- Individual errors on each simulation (blue)

- Spread of best fits (red)


Parameter error

- Poisson underestimates the errors, since it not 

take account of sample variance

-  Gaussian = Gauss-Poisson Compound


- Slightly underestimate errors, likely due to 
approximations made for the 2-pt 
statistics


- The same level of constraints

20

Results: (4 redshift bins)x(4 mass bins) case

- Fisher forecasts (circle) in agreement with 
individual errors

- Ensemble forecast (square) for the spread of 
posterior means
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Results: all binning schemes

Parameter error

- Errors decreases with the number 

of bins (10% improvement from 16 
to 10  bins)4

Poisson sampling

Sample varianceGaussian likelihood remains an accurate description of the data 

- Poisson 

- Underestimates the error, even 

for fine binning, does not 
account for sample variance


- Gaussian = Gauss-Poisson Comp.

- Over/under estimate 

constraints (approximation for 
computing the covariance 
matrix)


- The same level of constraints
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Pushing toward the Poisson regime?

1. High mass sample 

2. Reduced volume sample

For all binning setups 

- Gaussian is more accurate than Poisson

- Gaussian misses Poisson sampling


Find where Poisson and Gauss-Poisson 
Compound are valid and the Gaussian is not 
valid ? 


- Force shot noise dominant regime

1. Use only high mass halos 

2. Reducing survey sky area

M > 5.1014 M⊙
× 1/10

1. High mass sample 

Poisson underestimates error by 20 - 30 %

GPC and Gaussian: closer to ensemble error

2. Reduced volume sample

Poisson underestimates error by 5 - 20 %
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Conclusions

Recap

- We tested the accuracy of cluster likelihoods with


- 1000 simulated dark matter halo catalogs

- By comparing posterior variances to spread of means over the 1000 simulations

- Sensitive to analysis likelihood and latent likelihood properties

Conclusions: For future Euclid or Rubin-like surveys

- Gaussian gives robust constraints over a wide range of inference setup

- No gain in using Gauss-Poisson Compound (same level of constraints but computationally 

expansive)

- Gauss-Poisson Compound = Gaussian (under/overestimating errors at most 5%)

- Poisson likelihood always underestimates errors


