Testing likelihood accuracy for cluster count cosmology

C. Payerne, C. Murray, C. Combet, C. Doux, A. Fumagalli, M. Penna-Lima Talk based on arXiv:2210.11093 (11/2022)

Constantin Payerne, 3rd year PhD student

Outline

1. Introduction

- 1. Cosmology with galaxy cluster abundance
- 2. Likelihoods for cluster count cosmology
- 2. Framework for testing likelihood accuracy
 - 1. The 1000 PINOCCHIO simulations
 - 2. The methodology
- 3. Results
- 4. Conclusions

Galaxy Clusters

- Describe the latest evolution of the Universe

- Most massive bound systems with $M \in 10^{13} 10^{15}~M_{\odot}$
- z < 2, last step of hierarchical structure formation process
- Formed from the growth of small density inhomogeneities
- By the accretion and merging of smaller structures

- Good candidates to trace the matter content in the universe

- Multi-component systems
 - Dark matter (~80%) and baryonic matter
 - Multi-wavelength objects (optical, near-IR, mm, X-ray)
 - Laboratories to study the co-evolution of the dark and the baryonic matter
- At larger scales, lie at the intersections of the cosmic web filaments

Cosmology with galaxy cluster abundance

The abundance of galaxy clusters

- Geometry + growth of structures in the Universe
- Count clusters a function of redshift and mass

$$N_{\rm th} = \Omega_s \int_{z_1}^{z_2} dz \int_{m_1}^{m_2} dm \ \frac{dn(m, z)}{dm} \frac{d^2V(z)}{dz d\Omega}$$

- Depends on:

Halo Mass Function

- Matter content Ω_{m}
- To the amplitude of matter density fluctuation σ_8
- Formation history : growth rate over cosmological time $\sigma_8(z)$

Volume

- Background cosmology
- z < 2, sensitive to late time expansion history of the Universe, led by dark energy e.o.s

Cosmology with galaxy cluster abundance

Cluster abundance

- Probes Λ CDM ($\Omega_{
 m m}, \sigma_{
 m 8}$) as well as extensions
 - wCDM
 - Massive neutrinos $\sum m_{
 u}$
 - Primordial Non-Gaussianity
 - Testing gravity on large scales → modified gravity scenarios, ...

An order of magnitude in observed clusters with next-generation surveys

- From 10^{3-4} to 10^5 clusters
- Increase in size + in depth
- Large statistical power + need of significant improvement in control of systematics (e.g. synergy space/ground experiments for WL mass calibration)

Cluster abundance cosmology overview

Surveys	Start	Wavelengths	CL Analysis	Number of clusters
ACT	2007	mm	2013	68 (2020: > 4000)
WtG (ROSAT)	2000	X-rays	2014	224
Planck	2009	mm	2015	439 (all: 1653)
SPT	2007	mm	2016	343
SDSS	2000	Visible	2019	25 000
KiDs	2011	Visible	2020	3 6 5 2
DES	2013	Visible	2020	7 000
eROSITA	2019	X-rays	2022	455 (all: 100 000)
Rubin LSST	2023	Visible		> 100 000
Euclid	2023	Visible, near IR		> 100 000
S0	2023	mm		16 000
WFIRST	2026	Visible, near IR		40 000
CMB-S4	2029	mm		100 000
Roman	2027	Blue, near IR		23 000

Cosmology with galaxy cluster abundance

Basic recipe for cluster abundance cosmology

- From a galaxy cluster survey with known redshifts, masses
- Count the number $\overrightarrow{N}_{ ext{obs}}$ of galaxy clusters within bins of redshift and mass
- Posterior of cosmological parameter

$$p(\overrightarrow{\theta} \,|\, \overrightarrow{N}_{\rm obs}) = \pi(\overrightarrow{\theta}) \, \boxed{\mathcal{L}(\overrightarrow{N}_{\rm obs} \,|\, \overrightarrow{\theta})}$$
 Likelihood = $\mathcal{L}(\overrightarrow{N}_{\rm obs} \,|\, \overrightarrow{\theta})$

- $\overrightarrow{N}_{ ext{th}}$ at arbitrary cosmology
- Statistics
 - Count of discrete objects in bins → Poisson sampling
 - Fluctuation + clustering of the matter density field → Gaussian contributions
 - Non-linear physics of halo formation → More complications

Cluster abundance covariance matrix

Clustering + fluctuation of matter density field (within/beyond survey volume) = sample covariance

Likelihoods for cluster count cosmology

Likelihoods

- Ideally should describe completely abundance statistics
- There exist approximations
 - **Poisson likelihood** (Planck, 2015 ~ 500 clusters)
 - Accounts for Poisson sampling
 - Does not account for sample covariance
 - Valid for low number of clusters, Shot Noise > Sample variance
 - Gaussian likelihood (DES, 2021 ~ 7000 clusters)
 - Sample covariance
 - Limited to continuous approximation
 - Valid for high number of clusters, Shot Noise \sim Sample variance
 - Gauss-Poisson Compound (GPC) (KiDS, 2021 ~ 4000 clusters)
 - Takes into account both Poisson sampling and sample covariance (Hu & Kravtsov, 2003)
 - Computationally expansive to compute
 - Multidimensional integral $\mathcal{L}(\widehat{N} \mid \overrightarrow{\theta}) \propto \int d\overrightarrow{x} \, \mathcal{N}[\overrightarrow{x} \mid \overrightarrow{N}(\theta)] \times \prod_{k=1}^{n} \mathcal{P}[\widehat{N}_{k} \mid x_{k}]$
 - More precise, can we gain cosmological information?

Likelihoods for cluster count cosmology

Single variate likelihood $\mathcal{L}(n | N_{th})$

Accuracy of likelihoods for cluster abundance cosmology

*Dodelson, Schneider 2013, Percival et al. 2022 **Sellentin, Heavens 2018 for cosmic shear

Bias on parameter inference

- Deviation from the latent likelihood may bias results
 - Data covariance matrix is incorrect*
 - Inferred posteriors will be incorrect
 - The latent likelihood is not Gaussian**
 - Can shift posteriors
- In our case:
 - Latent likelihood is not Poisson, Gaussian, or Gauss-Poisson Compound
 - Halo model is an approximation
- Most robust constraints with analysis likelihood closest to latent one

Using simulations to test cluster abundance likelihoods

- Likelihood: statistical properties of the data at input cosmology
- With multiples simulations, can have access to "true" statistics of abundance

Outline

1. Introduction

- 1. Cosmology with galaxy cluster abundance
- 2. Likelihoods for cluster count cosmology

2. Framework for testing likelihood accuracy

- 1. The 1000 PINOCCHIO simulations
- 2. The methodology
- 3. Results
- 4. Conclusions

Framework for testing the accuracy of likelihoods

We use a set 1000 simulated dark matter halo catalogs

- PINOCCHIO algorithm (Monaco et al., 2013)
- Planck cosmology
- Masses calibrated on known halo mass function (Despali et al., 2015)
- Euclid-like sky area $\sim 1/4$ of full-sky
- $\sim 10^5$ halos per simulation
- $-M > 10^{14} M_{\odot}$

Abundance likelihood can be estimated from counts over the 1000 cosmological simulations

Framework for testing the accuracy of likelihoods

Methodology

1. Estimate the posterior for each of the 1000 Pinocchio mocks

More than 1 parameter: compare covariances

$$\sigma_{
m ind}^2 o C^{
m ind}$$
 Individual parameter covariance $\sigma_{
m ens}^2 o C^{
m ens}$ Ensemble parameter covariance

Why comparing individual errors to the spread of means?

- Robust constraints ?

- Reasonable request: For each simulation, the recovered error should be representative of the spread of recovered parameters over many realisations of the "Universe"

Gaussian likelihood

- Latent likelihood \mathscr{L}_X and analysis likelihood \mathscr{L}_Y
- Two data covariance matrices Σ_X and Σ_Y

- If
$$\Sigma_X = \Sigma_Y$$

- Then $C^{\text{ens}} = C^{\text{ind}}$
- Likelihood accuracy can be forecasted (Fisher formalism) ightarrow C^{Fisher}

- If
$$\Sigma_X
eq \Sigma_Y$$

- Then $C^{\text{ens}} \neq C^{\text{ind}}$
- C^{Fisher} is not sufficient to forecast likelihood accuracy
- $C^{\rm ens}$ can be forecasted $C_{\alpha\beta}^{\rm ens} = (C^{\rm Fisher}N_{,})_{\alpha}^T \Sigma_Y^{-1} \Sigma_X \Sigma_Y^{-1} (C^{\rm Fisher}N_{,})_{\beta} \neq C_{\alpha\beta}^{\rm Fisher}$
- Example: $\Sigma_{Y_{ii}} < \Sigma_{X_{ii}}$ then we have $C^{\mathrm{ind}}{}_{\alpha\alpha} < C^{\mathrm{correct}}{}_{\alpha\alpha} < C^{\mathrm{ens}}{}_{\alpha\alpha}$
- Likelihood and posterior are not always gaussians
- Rather closeness between individual errors and ensemble error
- Used as a metric to test likelihood accuracy

Using correct likelihood $C^{
m ens} = C^{
m ind}$

Framework for testing the accuracy of likelihoods

Study limited to idealised halos

- Ideal setup: individual "true" masses
- Real data: proxy-selected clusters
- Limited by knowledge of mass-proxy relations
 - + detection efficiency
- Increase error of cosmological parameters

Cosmological inference setup

- The Poisson, Gaussian and GPC likelihood are approximations
- Valid:
 - At linear scales (clusters are biased tracers of the density field)
 - For given shot noise/sample (co)variance relative importance
 - binning scheme of the mass-redshift plane
 - Sky survey area (Shot noise, sample (co)variance $\sim \Omega$)

Methodology: Test accuracy of likelihoods for various regimes

For each likelihood

- 1. $P(\Omega_m, \sigma_8 \mid \overrightarrow{N}_{\rm obs})$ for each PINOCCHIO simulation
- 2. For 3 binning schemes

	Redshift bins	Mass bins	# of bins	Average # N/bin	Poiss	Samp
#1	4	4	16	5000	on s	ole \
#2	20	30	600	150	amp	/aria
#3	100	100	10 000	10	ling	nce

 $\sim 10^4$ cosmological constraints ! Importance sampling (efficient for 2 parameters)

Outline

1. Introduction

- 1. Cosmology with galaxy cluster abundance
- 2. Likelihoods for cluster count cosmology

2. Framework for testing likelihood accuracy

- 1. The 1000 PINOCCHIO simulations
- 2. The methodology

→ 3. Results

4. Conclusions

Results: (4 redshift bins)x(4 mass bins) case

Histograms of 1000 means

- Scatter around input cosmology
- Validate the modelling input

Results: all binning scheme

Bias on the posterior mean

(black) Spread of posterior means (red) Error on the mean ($\times 1/\sqrt{1000}$)

- Small constant bias between input and recovered cosmology
 - Accuracy of the underlying halo model
 - Not due to 2-point statistics (Poisson does not depends on it)
 - Numerical error

Small bias on recovered cosmology (sub-percent)

Results: (4 redshift bins)x(4 mass bins) case

- Individual errors on each simulation (blue)
- Spread of best fits (red)

Parameter error

- Poisson underestimates the errors, since it not take account of sample variance
- Gaussian = Gauss-Poisson Compound
 - Slightly underestimate errors, likely due to approximations made for the 2-pt statistics
 - The same level of constraints
- Fisher forecasts (circle) in agreement with individual errors
- Ensemble forecast (square) for the spread of posterior means

Results: all binning schemes

Parameter error

- Errors decreases with the number of bins (10% improvement from 16 to 10⁴ bins)

- Poisson

 Underestimates the error, even for fine binning, does not account for sample variance

- Gaussian = Gauss-Poisson Comp.

- Over/under estimate constraints (approximation for computing the covariance matrix)
- The same level of constraints

Gaussian likelihood remains an accurate description of the data

Pushing toward the Poisson regime?

For all binning setups

- Gaussian is more accurate than Poisson
- Gaussian misses Poisson sampling

Find where Poisson and Gauss-Poisson Compound are valid and the Gaussian is not valid?

- Force shot noise dominant regime
 - 1. Use only high mass halos $M > 5.10^{14} M_{\odot}$
 - 2. Reducing survey sky area $\times 1/10$

1. High mass sample

Poisson underestimates error by 20 - 30 % GPC and Gaussian: closer to ensemble error

2. Reduced volume sample

Poisson underestimates error by 5 - 20 %

2. Reduced volume sample

Conclusions

Recap

- We tested the accuracy of cluster likelihoods with
 - 1000 simulated dark matter halo catalogs
 - By comparing posterior variances to spread of means over the 1000 simulations
 - Sensitive to analysis likelihood and latent likelihood properties

Conclusions: For future Euclid or Rubin-like surveys

- Gaussian gives robust constraints over a wide range of inference setup
- No gain in using Gauss-Poisson Compound (same level of constraints but computationally expansive)
- Gauss-Poisson Compound = Gaussian (under/overestimating errors at most 5%)
- Poisson likelihood always underestimates errors

