Precision modeling of neutrino impact on LSS

Based on works in collaboration with M. Garny, M. Escudero: JCAP **01** (2021) 020 [2008.00013], JCAP **09** (2022) 054 [2205.11533], Phys. Rev. D **106** (2022) 063539 [2207.04062]

Petter Taule

Euclid-France Theory and Likelihood Workshop

28.11.2022

Outline

- 1. Introduction
- 2. Framework to compute loop corrections with general time- and scale-dependence
- 3. Application: massive neutrinos in LSS
- 4. Non-standard neutrino interactions: CMB constraints and impacts on LSS

• LSS is powerful: BAO and RSD, now also full-shape (FS)

- LSS is powerful: BAO and RSD, now also full-shape (FS)
- EFTofLSS for biased tracers: $\delta_g = \sum_{\mathcal{O}} b_{\mathcal{O}}(\tau) \mathcal{O}(\mathbf{x}, \tau) + \epsilon(\mathbf{x}, \tau)$

Baumann et.al. '10, Carrasco et.al. '12, Desjacques et.al. '16

- $\circ~$ Pro: Systematically parametrizing tracers order-by-order + capturing effect of small-scales
- Con: Many free parameters

• LSS is powerful: BAO and RSD, now also full-shape (FS)

• EFTofLSS for biased tracers:
$$\delta_g = \sum_{\mathcal{O}} b_{\mathcal{O}}(\tau) \mathcal{O}(\mathbf{x}, \tau) + \epsilon(\mathbf{x}, \tau)$$

Baumann et.al. '10, Carrasco et.al. '12, Desjacques et.al. '16

- $\circ~$ Pro: Systematically parametrizing tracers order-by-order + capturing effect of small-scales
- Con: Many free parameters
- FS analysis of BOSS data at 1-loop
 - ACDM
 Ivanov et.al. '19, D'Amico et.al. '19, Tröster et.al. '19
 - \circ +*M*_u, DM interactions, modified gravity, ...

e.g. Ivanov et.al. '19, Abellan et.al. '21, Piga et.al. '22

- LSS is powerful: BAO and RSD, now also full-shape (FS)
- EFTofLSS for biased tracers: $\delta_g = \sum_{\mathcal{O}} b_{\mathcal{O}}(\tau) \mathcal{O}(\mathbf{x}, \tau) + \epsilon(\mathbf{x}, \tau)$

Baumann et.al. '10, Carrasco et.al. '12, Desjacques et.al. '16

- $\circ~$ Pro: Systematically parametrizing tracers order-by-order + capturing effect of small-scales
- Con: Many free parameters
- FS analysis of BOSS data at 1-loop
 - ACDM Ivanov et.al. '19, D'Amico et.al. '19, Tröster et.al. '19
 - $\circ~+M_{\nu},~\text{DM}$ interactions, modified gravity, ...

e.g. Ivanov et.al. '19, Abellan et.al. '21, Piga et.al. '22

• The future is bright

- FFTLog: fast evaluation of loop integrals
 - Needed for MCMC parameter scans
 - Assumes scale-independent non-linear growth
 - $\circ~$ Time-dependence often approximated by that of an EdS universe $(\Omega_{\it M}=1)$

- FFTLog: fast evaluation of loop integrals
 - Needed for MCMC parameter scans
 - Assumes scale-independent non-linear growth
 - Time-dependence often approximated by that of an EdS universe ($\Omega_M = 1$)
- **Our goal:** compute loop corrections taking *general time- and scale-dependence* into account

- FFTLog: fast evaluation of loop integrals
 - Needed for MCMC parameter scans
 - Assumes scale-independent non-linear growth
 - Time-dependence often approximated by that of an EdS universe ($\Omega_M = 1$)
- **Our goal:** compute loop corrections taking *general time- and scale-dependence* into account
- Assess approximations in ACDM and extensions

- FFTLog: fast evaluation of loop integrals
 - Needed for MCMC parameter scans
 - Assumes scale-independent non-linear growth
 - $\circ~$ Time-dependence often approximated by that of an EdS universe ($\Omega_{M}=1)$
- **Our goal:** compute loop corrections taking *general time- and scale-dependence* into account
- Assess approximations in ACDM and extensions
- Application: massive neutrinos in structure formation
- Scale-dependent suppression of power spectrum from neutrino freestreaming

$$k_{
m FS} \simeq rac{0.05 \ h/
m Mpc}{\sqrt{1+z}} \left(rac{m_{
u}}{0.1 \
m eV}
ight) \left(rac{\Omega_m}{0.3}
ight)^{1/2}$$

Eulerian perturbation theory

• Equations of motion for cold DM (+baryons)

$$\partial_{\tau} \delta + \nabla \cdot \left[(1 + \delta) \mathbf{v} \right] = \mathbf{0}$$
$$\partial_{\tau} \mathbf{v} + \mathcal{H} \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla \phi$$

Eulerian perturbation theory

• Equations of motion for cold DM (+baryons)

$$\partial_{\tau} \delta + \nabla \cdot \left[(1 + \delta) \mathbf{v} \right] = 0$$
$$\partial_{\tau} \mathbf{v} + \mathcal{H} \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla \phi$$

Rewritten in compact form ($\theta = \nabla \cdot \mathbf{v}$)

$$\partial_{\tau} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{a} + \Omega_{ab} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{b} = \int \mathrm{d}^{3}\mathbf{q} \, \gamma_{abc} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{b} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{c}$$

Eulerian perturbation theory

• Equations of motion for cold DM (+baryons)

$$\partial_{\tau} \delta + \nabla \cdot \left[(1 + \delta) \mathbf{v} \right] = 0$$
$$\partial_{\tau} \mathbf{v} + \mathcal{H} \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla \phi$$

Rewritten in compact form ($\theta = \nabla \cdot \mathbf{v}$)

$$\partial_{\tau} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{a} + \Omega_{ab} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{b} = \int d^{3}\mathbf{q} \gamma_{abc} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{b} \begin{pmatrix} \delta \\ \theta \end{pmatrix}_{c}$$

• Perturbation theory on mildly non-linear scales $k \sim 0.1 \ h/{
m Mpc}$

$$\begin{pmatrix} \delta \\ \theta \end{pmatrix}_{a} = \sum_{n=1}^{\infty} \int_{\mathbf{q}_{1},\dots,\mathbf{q}_{n}} \delta_{D}(\mathbf{k} - \sum_{j} \mathbf{q}_{j}) \mathbf{F}_{a}^{(n)}(\mathbf{q}_{1},\dots,\mathbf{q}_{n}) \prod_{j=1}^{n} \delta_{0}(\mathbf{q}_{j},\tau_{\text{ini}})$$

EdS: analytic solutions for $F_a^{(n)}$

Bernardeau et.al. 2001

Eulerian perturbation theory, extended

• Extension: Generic time- and scale-dependence and multiple components

$$\partial_{\tau} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{a} + \Omega_{ab} \begin{pmatrix} \mathbf{k}, \tau \end{pmatrix} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{b} = \int d^{3}\mathbf{q} \gamma_{abc} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{b} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{c}$$

Eulerian perturbation theory, extended

• Extension: Generic time- and scale-dependence and multiple components

$$\partial_{\tau} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{a} + \Omega_{ab} \begin{pmatrix} \mathbf{k}, \tau \end{pmatrix} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{b} = \int d^{3} \mathbf{q} \gamma_{abc} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{b} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{c}$$

$$\begin{pmatrix} \delta \\ \theta \\ \cdots \end{pmatrix}_{a} = \sum_{n=1}^{\infty} \int_{\mathbf{q}_{1},\dots,\mathbf{q}_{n}} \delta_{D}(\mathbf{k} - \sum_{j} \mathbf{q}_{j}) F_{a}^{(n)}(\mathbf{q}_{1},\dots,\mathbf{q}_{n},\tau) \prod_{j=1}^{n} \delta_{0}(\mathbf{q}_{j},\tau_{\text{ini}})$$

M. Garny, PT: 2008.00013

Eulerian perturbation theory, extended

• Extension: Generic time- and scale-dependence and multiple components

$$\partial_{\tau} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{a} + \Omega_{ab} \begin{pmatrix} \mathbf{k}, \tau \end{pmatrix} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{b} = \int d^{3} \mathbf{q} \gamma_{abc} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{b} \begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{c}$$

$$\begin{pmatrix} \delta \\ \theta \\ \dots \end{pmatrix}_{a} = \sum_{n=1}^{\infty} \int_{\mathbf{q}_{1},\dots,\mathbf{q}_{n}} \delta_{D}(\mathbf{k} - \sum_{j} \mathbf{q}_{j}) F_{a}^{(n)}(\mathbf{q}_{1},\dots,\mathbf{q}_{n},\tau) \prod_{j=1}^{n} \delta_{0}(\mathbf{q}_{j},\tau_{\text{ini}})$$

Pros:

- Exact time-dependence in ACDM and wCDM
- Neutrino freestreaming
- Viscous DM, warm DM
- Additional light relics

• M. Garny, PT: 2008.00013

Cons:

- No analytic solution (in general)
- Slow: numerical loop integration solving ODE for $F_a^{(n)}$ at every integration point

Petter Taule

Two-component fluid

• Goal: model neutrinos in structure formation beyond linear theory

Two-component fluid

- Goal: model neutrinos in structure formation beyond linear theory
- CDM+baryons (cb): one joint component
- Neutrinos: $z_{
 m nr} \simeq 189 \left(rac{m_{
 u}}{0.1 \ {
 m eV}}
 ight)$
 - z > 25: Full Boltzmann hierarchy (linear)
 - z < 25: Fluid description (non-linear)

D. Blas et.al. 1408.2995 M. Garny, PT 2008.00013, 2205.11533

Petter Taule

Precision modeling of neutrino impact on LSS

Two-component fluid

- · Goal: model neutrinos in structure formation beyond linear theory
- CDM+baryons (cb): one joint component
- Neutrinos: $z_{
 m nr} \simeq 189 \left(rac{m_{
 u}}{0.1 \ {
 m eV}}
 ight)$
 - z > 25: Full Boltzmann hierarchy (linear)
 - z < 25: Fluid description (non-linear)
- Fluid perturbations: $(\delta_{cb}, \theta_{cb}, \delta_{\nu}, \theta_{\nu})$
- cb and u coupled via gravity, equation for neutrino velocity

$$\partial_{\tau}\theta_{\nu} + \mathcal{H}\theta_{\nu} + \frac{3}{2}\mathcal{H}^{2}\Omega_{m}[f_{\nu}\delta_{\nu} + (1 - f_{\nu})\delta_{cb}] - \frac{k^{2}c_{s}^{2}\delta_{\nu}}{k^{2}\sigma} + \frac{k^{2}\sigma}{k^{2}\sigma} = \dots$$

Neutrino sound velocity c_s^2 and σ from linear theory \rightarrow scale-dependent dynamics

D. Blas et.al. 1408.2995 M. Garny, PT 2008.00013, 2205.11533

Comparison

- *Full solution*: two-component fluid embedded in extended Eulerian perturbation theory
- Commonly used *simplified treatment*: EdS approximation and neutrino perturbations included only linearly
- Dashed lines: linear+1-loop. Solid lines: linear+1-loop+2-loop

Comparison

- *Full solution*: two-component fluid embedded in extended Eulerian perturbation theory
- Commonly used *simplified treatment*: EdS approximation and neutrino perturbations included only linearly
- Dashed lines: linear+1-loop. Solid lines: linear+1-loop+2-loop

CDM+baryons density spectrum $\langle\delta\delta\rangle$

M. Garny, PT 2205.11533

Comparison

- *Full solution*: two-component fluid embedded in extended Eulerian perturbation theory
- Commonly used *simplified treatment*: EdS approximation and neutrino perturbations included only linearly
- Dashed lines: linear+1-loop. Solid lines: linear+1-loop+2-loop

CDM+baryons density spectrum $\langle \delta \delta \rangle$

CDM+baryons velocity spectrum $\langle \theta \theta \rangle$

15

M. Garny, PT 2205.11533

EFTofLSS

- "Standard" cosmological PT sensitive to unknown UV physics ($k > k_{NL}$)
- Effective theory: 1
 - $\circ~$ Do not need to know small-scale to do long-distance physics
 - Correct for UV-dependence by effective operators with free coefficients
 - Symmetries: equivalence principle, Galilean invariance
- Two-component fluid with neutrinos: EFT for $k_{\rm FS} \ll k \ll k_{\rm NL}$ ²

Comparison to N-body

- Including EFT counterterms, fitted to Quijote 1 N-body results, for $\sum m_{\nu}=0.1~{\rm eV}$
- 1-fluid: simplified treatment 2-fluid: full solution

F. Villaescusa-Navarro et.al. 1909.0573

II. Non-standard neutrino interactions

Non-standard neutrino interactions

- Freestreaming neutrinos imprint signals in the CMB
- Non-standard neutrino interactions that prevents freestreaming can be tested with the CMB

Non-standard neutrino interactions

• Power-law rates: $\Gamma_{nfs} \propto T^{n_{int}}$ with $n_{int} = [-5, -3, -1, 1, 3, 4, 5]$

e.g. Chacko et.al. '03, Beacom et.al '04, Hannestad et.al. '05, Archidiacono et.al. '13, Cyr-Racine et.al. '13, Escudero et.al. '19, Forastieri et.al. '19, Choudhury et.al. '20, Brinckmann et.al. '20, Escudero et.al. '21 Abellán et.al. '21, Chen et.al. '22,

CMB constraints and LSS impacts

Full Planck legacy analysis with CLASS and MontePython

PT, M. Escudero, M. Garny 2207.04062

Petter Taule

Precision modeling of neutrino impact on LS:

CMB constraints and LSS impacts

Full Planck legacy analysis with CLASS and MontePython

 $\rightarrow {\it Redshift-window} \ 2000 < z < 10^5$ where neutrino freestreaming cannot be dampened

- $\rightarrow~\text{LSS}$ probes can constrain non-standard neutrino interactions
- PT, M. Escudero, M. Garny 2207.04062

Summary

- Eulerian PT extension that can capture general time- and scale-dependence
 - Allows to consider extended models, but not efficient enough for MCMC
- Application: Effect of neutrino perturbations beyond linear theory
 - · Discrepancy on density spectrum largely degenerate with counterterms
 - $\circ\,$ Larger impact of scale-dependence due to neutrinos on velocity spectrum $\rightarrow\,$ RSD
- Non-standard neutrino interactions
 - $\circ~$ Freestreaming window 2000 $< z < 10^5$ in which neutrinos cannot interact significantly
 - · Interactions dampening freestreaming at high redshift can be probed by LSS

Backup slides

Linear two-fluid evolution

Order/parameter comparison

3/9

Two-loop subtraction

EFT parameters

 $^{5}/_{9}$

EFT parameters

⁶/9

Precision modeling of neutrino impact on LS

9/9