

Contents

- Introduction
- Likelihood
- Theory
- Conclusions

I. Tutusaus | 28th November 2022

Introduction

Euclid will measure the shape and redshift of millions of galaxies up to redshift ~2:

[Credit: ESA]

Introduction

The survey will allow us to consider several cosmological probes:

Introduction

- With Euclid we will:
 - Constrain dark energy
 - Constrain dark matter
 - Test the theory of gravity at cosmological scales
- But in order to perform the analyses we need a **theory** model to compute our predictions and a **likelihood** to compare the measurements against the predictions

- Main goal: Implement the Euclid likelihood for:
 - Spectroscopic galaxy clustering (BAO+RSDs)
 - Photometric galaxy clustering
 - Weak lensing
 - Cross-correlations (galaxy-galaxy lensing)
 - Additional probes
 - Extended models

Main goal:

From Euclid Data

3x2pt (pseudo Cl and/or 2pt CFs)
GCsp (Legendre multipoles and/or 2pt CFs)
3x2pt systematics (photo - z, shear, etc.)
GCsp systematics (purity, completeness, etc.)

To Cosmological Constraints

dark energy equation of state nature of dark matter initial conditions modified gravity theories

Observatoire 3 au atrophysique 6 planétologie

I. Tutusaus

Main goal: Implement the Euclid likelihood

- Inter-Science Working Groups Task-forces:
 - Likelihood (IST:L). Leads: V. Cardone, S. Joudaki, V. Pettorino (A. Sánchez) + ~20 members (more than 20% FTE)
 - Nonlinear (IST:NL). Leads: M. Crocce, C. Giocoli, A. Pourtsidou + ~20 members (more than 20% FTE)

- IST:L first steps:
 - Agreed on a first minimal recipe for the primary probes with the Science Working
 Groups contact points
 - Defined a data model and use cases
 - Discussed available CosmoBoxes and selected Cobaya (CosmoSIS)
 - Adoption of workflow with AGILE management concepts + Slack for everyday interactions
 - Implemented development guidelines
 - Code training for the group members: Continuous integration, API documentation, git development guidelines

- IST:L first steps:
 - Defined a data model and use cases:
 - DM: illustrates input, output, interfaces
 - Use cases: how is the user supposed to use the code?

IST:L first steps:

Discussed available CosmoBoxes and selected Cobaya (CosmoSIS)

Code	Language	CAMB+CLASS	Modularity	Maintainance	Default Samplers	Other samplers available	Analysis tools	Postprocessing	Main developer in Euclid	Used in collaborations	Contacts within Euclid	Speed
Cobaya	python	~	Ø		3/5	~	5/5	GetDist	×	Simons Observatory	G. Cañas Herrera M. Martinelli	?
CosmoMC	fortran	×	×	⊘	2/5	V	4/5	GetDist	×	Planck	S. Joudaki M. Martinelli 	?
CosmoSIS	C++ fortran python	~	×	Ø	3/5	~	5/5	internal/GetDist	×	DES	I. Tutusaus	?
MontePython	python	×		×	2/5	V	4/5	internal/GetDist	~	Planck	M. Archidiacono S. Clesse J. Lesgourgues	?

Samplers:

- 1. Metropolis-Hastings
- 2. Nested Sampling
- 3. MCMC hammer
- 4. Population MonteCarlo
- 5. Oversampling of nuisance parameters

Analysis tools:

- Minimizer
- 2. Evaluator in one point
- 3. Bayesian Evidence
- 4. Bayesian posterior
- 5. Produces output chains

Modularity:

how much the code needs to be modified when adding a new likelihood.

High

Average

Low

Maintainance:

guaranteed updates of the code, including addition of new data

High

Average

Low

- IST:L workflow with AGILE management:
 - Gitlab, taskboard, scrum master and team development
 - A specific (small) development task emerges
 - IST:L leads assign it to a development team and add it on the taskboard

Developer(s)

Reviewer(s)

GC Expert

WL Expert

Theory Expert

Nonlinear Expert

- Team members periodically rotate.
- All members encouraged to contribute to the whole project

- How are the likelihood recipes decided:
 - The likelihood work package of the different Science Working Groups test different recipes and identify the one(s) that should be used with real data.
 - IST:L implements the chosen recipes through the creation of small tasks (AGILE management).
 - IST:L uses existing codes for testing, but all the code adapted/ merged/improved in the official likelihood follows the development guidelines (high standard).

28th November 2022

CLOE

COSMOLOGY LIKELIHOOD OBSERVABLES EUCLID

CONCEPT

code in modular blocks individuate what is needed input from SWGs and OUs connection with IST:NL interface with SWGs codes

DATASET

3x2pt PseudoCl
3x2pt 2PCF
3x2pt COSEBIs
GCsp Legendre multipoles
GCsp 2PCF

RECIPE

observables to consider from theory to observables include systematics input quantities output quantities

LIKELIHOOD

covariance matrix
Gaussian vs non Gaussian
priors and scale cuts
sampling
additional cosmoligical probes

28th November 2022

CLOE v1.0:

- Internally released on May 2021 (not yet to be used for scientific papers or tests of scale cuts and models)
- Probes: spectroscopic and photometric GC, WL, and GGL
 (Legendre multipoles and harmonic space power spectra)
- Gaussian likelihood with Gaussian covariance
- Linear matter power spectrum
- No systematic uncertainties

CLOE v1.1:

- New user interface: Through executables and command lines or yaml configuration files
- Masking vector: Observables and scale cuts to consider
- Speed and documentation improvement and bug fixing
- Interface with IST:NL in place

- CLOE v2.0 (to be released and used for scientific papers):
 - Updates recipes:
 - Magnification bias (GCph and GGL)
 - Linear RSD (GCph and GGL)
 - Non flat models
 - Different n(z) for source and lens samples
 - Multiplicative shear and photometric redshift uncertainties
 - Nonlinear matter power spectrum (IST:NL)

- CLOE v2.0 (to be released and used for scientific papers):
 - More realistic observables:
 - 2PCF for 3x2pt
 - Pseudo-Cl's for harmonic space analysis
 - 2PCF for spectroscopic GC
 - BNT transform to remove small scales
 - Scale cuts (IST:NL)
 - Gaussian + Super Sample Covariance

IST:NL:

• Using wrong or incomplete models will bias our results!

Observatoire x

IST:NL (CLOE v2.0):

- Perturbation theory for spectroscopic GC: 1-loop PT with counter terms (FAST-PT)
- Nonlinear matter power spectrum / emulators for photometric probes: Halofit, HMCode, BACCO, Euclid Emulator 2
- Baryonic modeling / emulators: BACCO, BCEmu, HMCode
- Intrinsic alignments: NLA, TATT, Halo model
- 3x2pt theory covariance: Gaussian+SSC (PySSC)

- Main goal: Test beyond LCDM
 - Prepare beyond-standard analysis; select and study beyondstandard models
 - Provide vision for new interesting models and probes
 - Support Science Working Groups and IST:L/IST:NL for theory
 - Leads: F. Finelli, M. Kunz, V. Pettorino, A. Silvestri

- Structure: work packages
 - Dark energy and modified gravity
 - Dark matter
 - Initial conditions
 - Homogeneity and isotropy
 - Extended forecasts

- Nonlinearities
- Relativistic effects
- Likelihood
- Additional probes
- Simulations

- Structure: key projects
 - Forecasts for beyond standard models in cosmology and fundamental physics (Y. Akrami, S. Casas, A. Silvestri)
 - Relativistic effects (D. Bertacca, F. Lepori)
 - Simulations and nonlinearities beyond LCDM (M. Baldi, F. Vernizzi)
 - ~15 scientific pre-launch papers planned

- Example: Euclid will constrain scale-independent modified-gravity models:
 - Jordan-Brans-Dicke, Dvali-Gabadadze-Porrati, K-Mouflage:

Observatoire x observ

Example: Magnification effects cannot be neglected for GCph and GGL:

Observatoire x attrophysique & planétologie P

Conclusions

- Two Inter-Science Working Groups Task-forces have been created to develop the official Euclid likelihood (IST:L) accounting for nonlinearities (IST:NL)
 - The first version of the code CLOE ready to be used for scientific results will soon be released. Further improvements are expected before the analysis of real data
- The **theory** science working group has been established to define the **extended models to be tested** and support the other groups and IST:L/IST:NL to properly **perform the analysis beyond LCDM**
 - Multiple extensions beyond LCDM are being considered: dark energy and modified gravity, dark matter, initial conditions, homogeneity and isotropy, relativistic effects

Observatoire X at Control of the Con