

Dark Matter reconstruction from stellar orbits in the Galactic Centre

Gernot Heißel

Meudon November 15, 2022

ESA UNCLASSIFIED - For ESA Official Use Only

Introduction

- Stellar orbits in the galactic centre.
 - Infrared observations revealed compact object of 4 Mio. solar masses.
 - ½ of 2020 Nobel prize (Genzel & Ghez. Other ½ Penrose)
 - Focus shifted to observation of relativistic effects in stellar orbits (S2)
 - Gravitational redshift by GRAVITY Collab. et al. (2018) & confirmed by others
 - Schwarzschild precession by GAVITY Collab. et al. (2020, 2022*)

Stellar dynamics around a massive black hole LESIA Observatoire Cesa

$$\dot{\mathbf{r}} = -\frac{GM}{r^2}\hat{\mathbf{r}}$$

i

$$\ddot{\mathbf{r}} = -\frac{GM}{r^2}\hat{\mathbf{r}} + (\text{post-Newtonian})$$

$$\dot{\mathbf{r}} = -\frac{GM}{r^2}\hat{\mathbf{r}} + (\text{post-Newtonian}) + (\text{Dark Matter})$$

→ THE EUROPEAN SPACE AGENCY

4

The dark mass signature in the orbit of S2

Heißel G, Paumard T, Perrin G, Vincent F A&A 660 A13 (2022)

- Considered perturbed Kepler problem
 - $\ddot{\mathbf{r}} = -\frac{GM_{\bullet}}{r^2}\frac{\mathbf{r}}{r} + \mathbf{a}_{1\text{PN}} + \mathbf{a}_{\text{DM}}$
- **a**_{DM} generated by **density profile**

$$\rho(r) = \begin{cases} \rho_0 \left(1 + \frac{r^2}{r_0^2}\right)^{-5/2} & \text{Plummer} \\ \rho_0 \left(\frac{r}{r_0}\right)^{-7/4} & \text{Bahcall-Wolf cusp} \end{cases}$$

OOGRE code integrates osculating equations

$$\partial_t(p, e, \iota, \Omega, \omega, f) = \mathbf{f}(p, \dots, f, \mathbf{a}_p)$$

argument of pericentre

Dark Matter impact on orbital elements

LESIA

Observatoire

esa

- Dark Matter impact on observables
 - Astrometry (RA, DEC)

 $\Delta A_{I,III}(f) = \sqrt{\Delta R A_{I,III}^2(f) + \Delta DEC_{I,III}^2(f)}$

Radial velocity (RV)

Mock Data analysis

• Data limited to **orbital halves**

Cannot constrain DM. Can constrain DM.

Confirms that peri half by itself is not sensitive to DM.

• Data on full orbit with different accuracies.

Constrains DM better.

- **Counterintuitive** given previous result!
- Can denser sampling make up for data gap on orbit? No!

Constrains DM better.

Detection threshold estimates

Results come with * of **assumed** ρ_0 profile.

*

Mass distribution in the Galactic Centre...

GRAVITY Collaboration et al. A&A 657 L12 (2022), Corresponding: Gillessen S, Widmann F, Heißel G

- Observational Updates since 2020
 - more GRAVITY data, and GRAVITY data for more stars
 - S29 & S55 went through pericentre
 - → New faint star S300 detected $m_K^{S300} \approx 19, m_K^{S2} \approx 14$ GRAVITY et al. (2022b) "Deep images of the GC..."

LESIA l'Observatoire

9

esa

Sharpened constraints

• Sharpened measurement of Schwarzschild precession

⇒ S2 orbit fit $f_{\text{SP}}^{2020} = 1.10 \pm 0.19$ vs. $f_{\text{SP}}^{2022} = 0.85 \pm 0.16$

→ 4 star orbit fit $f_{SP}^{2022} = 0.997 \pm 0.144$ $f_{SP} = \begin{cases} 0 & \text{Newton} \\ 1 & \text{Einstein} \end{cases}$

 \Rightarrow Improved **rejection of Newton** from 5 to 7σ

• Sharpened constraints on **dark mass**

→ S2 orbit fit

$$M_{\text{enclosed}}^{2020} = (\sim 0 \pm 4300) M_{\odot}$$
 vs.
 $M_{\text{enclosed}}^{2022} = (2700 \pm 3500) M_{\odot}$

⇒ 4 star orbit fit
$$M_{\text{enclosed}}^{2022} = (-3800 \pm 2400) M_{\odot}$$

 \Rightarrow Improved 1 σ upper bound from 0.1% to 0.06% of M_{\bullet}

Predictions so far **confirmed** \checkmark . Results come with * of **assumed** ρ_0 . 10

eesa

DM reconstruction from stellar orbits in the GC

Lechien T, Heißel G, Jai G, Izzo D in preparation

- Motivation
 - get rid of * (assumption of density profile)
 - give model flexibility to attain different density profiles
 - fit to data should find true distribution
 - allow to infer physical nature of DM

$$=\begin{cases} \rho_0 \left(1 + \frac{r^2}{r_0^2}\right)^{-5/2} & \text{Plummer} \\ \rho_0 \left(\frac{r}{r_0}\right)^{-7/4} & \text{Bahcall-Wolf cusp} \\ \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma \in (0.5, 2.5)} & \text{particle dark matter} \\ \text{etc.} & \text{mix of the above} \end{cases}$$

Not necessarily spherically symmetric!

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔳 🚍 📲 🚍 👞 🚳 🍉 📲 👯 🚍 🛨 🚍 📾 🖕 📌 🗰 🖊

 $\rho(r)$

Mass shell model

→ THE EUROPEAN SPACE AGENCY

13

→ THE EUROPEAN SPACE AGENCY

- Advantage
 - ➡ flexibility of model
 - can find true distribution from fitting to data
- Disadvantage
 - higher number of model parameters
 - more data needed to constrain model

e.g. Plummer: 2 parameters

Mas shell: 10+ parameters

perfect mock data (no noise), 300 obs, 1 orbit

- Mass shell model reliable for noiseless data
- Not robust enough for current number of observations and instrument precision on one star.
- Not yet applicable to the GC, but potentially in the future. (more data, better accuracy, good data for more stars)