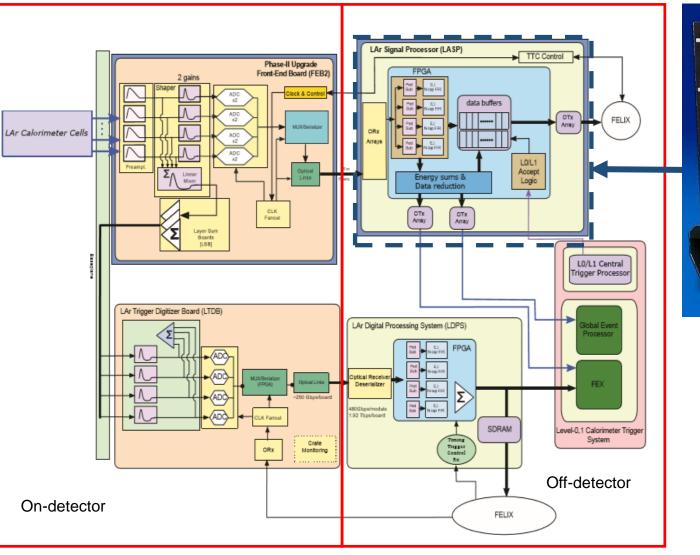


LASP board design for the ATLAS Calorimeter Experiment JME 2023

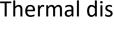
Kevin ARNAUD On behalf of the CPPM team


- Liquid Argon acquisition system
- Functional diagram of LASP board: test board and prototype
- LASP board challenges
- PCB features
- Study and simulations
- Testing the LASP test board
- What is new for the prototype board
- Conclusion

Liquid Argon acquisition system

LIQUID ARGON SIGNAL PROCESSOR (LASP)

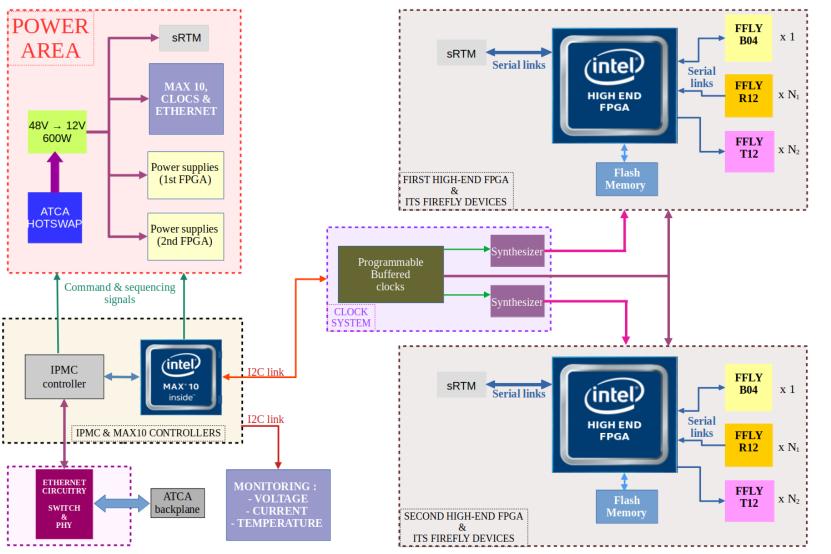
On-detector electronics


- 1600 Front End boards FEB2
- 40000 optical fibers at 10.24Gb/s -> 42To/s

Off-detector electronics •

- 30 ATCA crates
- 334 ATCA main boards associated with smart **Rear Transition Modules**

DDN


Thermal dissipation : 70kW

JME 2023: LASP board design

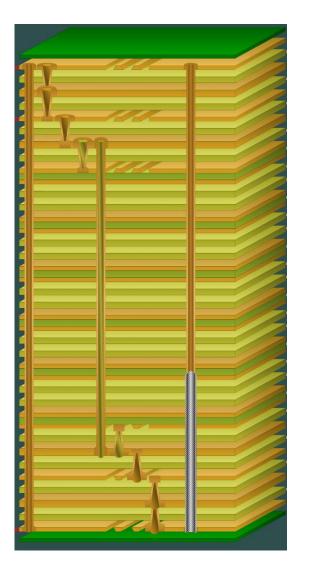
TLAS <u>Functional diagram of two LASP board versions</u>

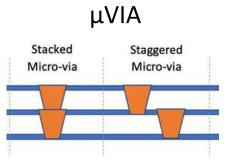
JME 2023: LASP board design

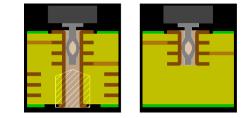
Components	Test board (2021)	Prototype board (2024)	
High-end FPGA	STRATIX-10	AGILEX-7	
DDR4	Yes	No	
FIREFLY R12	8	6	
/ FPGA	(14 Gbps)	(25 Gbps)	
FIREFLY T12	3	2	
/ FPGA	(14 Gbps)	(25 Gbps)	
FIREFLY B04	1	1	
/ FPGA	(28 Gbps)	(28 Gbps)	

Challenges for both LASP versions

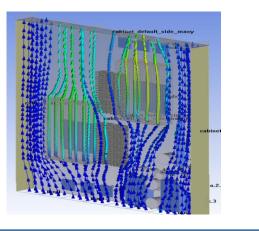
- More than 140 schematics pages
- 16000 connections
- Data rates : 25 Gb/s (with different lengths)
 - 56 links at 25 Gb/s
 - 192 links at 10.24 Gb/s
- Power
 - VCC Core :
 - Up to 120A for the test board
 - Up to 240A for the prototype board
 - Authorized maximal power: 350W
- High component density: around 4000
- Various packages(BGA , TQFP , DFN ,0201,...),
- Press fit connectors
- ATCA format : 280 mm x 322.25 mm
- PCB thickness : 2.4 mm

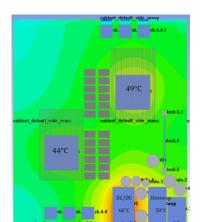


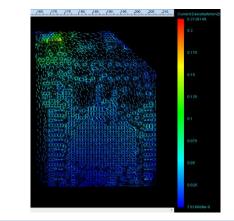

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPM

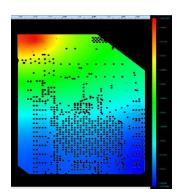


- 20-layer HDI PCB (High-Density Interconnection)
 - 6 signal layers
 - 14 power layers
- Selected technologies
 - Micro Via Stacked and Staggered
 - Signal integrity
 - No stub effect
 - Recommended for high signal density
 - Recommended for power distribution
 - Backdrill technique for Press fit connectors (high speed)
- Selected materials
 - Dielectric
 - Test board: Megtron6 (adapted for high speed designs)
 - Prototype board: EM-528K (halogen free as requested by CERN)
 - Copper quality
 - Test board: standard quality
 - Prototype board: highest quality (HVLP)


Backdrill

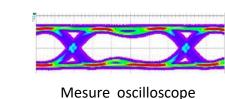



Simulations and designs


• Thermal study with ANSYS

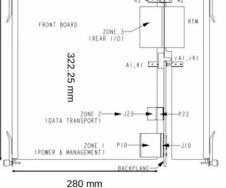
• Power shape simulations with Cadence SIGRITY

- Power supplies: Spice simulation, design & test
 - Testing with devkits
 - Simulation with LTSPICE (Linear Technology)
 - VRTT tool


• Electrical Tests OK

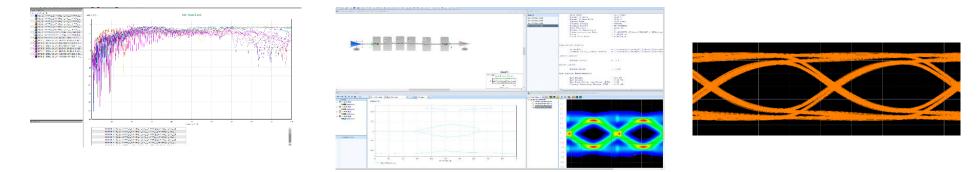
- Power
 - ➢ 48V to 12V converter
 - ➤ 12V distribution
 - ➢ Powering STRATIX 10
 - STRATIX-10 power sequence
 - Stress test FPGA by augmenting occupancy:
 - \clubsuit Vary number of FW slices and processing slice
 - ✤ 25%, 50%, 75% and 99% FPGA core used
 - Both FPGA's on
- I²C links
 - ➤ Temperatures
 - > ADC (voltage/current monitoring)
 - Clock (Jitter Cleaner)
- STRATIX-10 JTAG programming through direct links
- UART SLOW-Control monitoring with MAX10
- SLOW-Control IPMC with the shelf manager

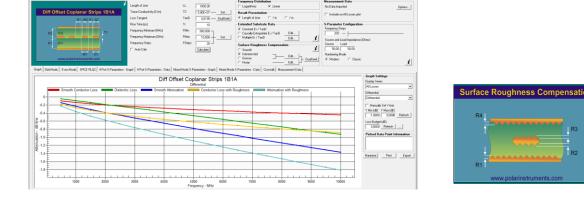
• Optical tests : evaluate eye diagram

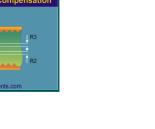

- FIREFLY on LASP test board
 - Optical loop from B04 TX to B04 RX @ 26 Gbps : 62% to 67%
 - Optical loop from TX to RX at 12.5Gb/s: 68% to 80%

Example opening of 75 % at 12.5 Gb/s

- From LASP STRATIX-10 transceivers to sRTM FIREFLY
 - For tracks 30 to 40 cm long, the eye diagram opening is less than 30%.

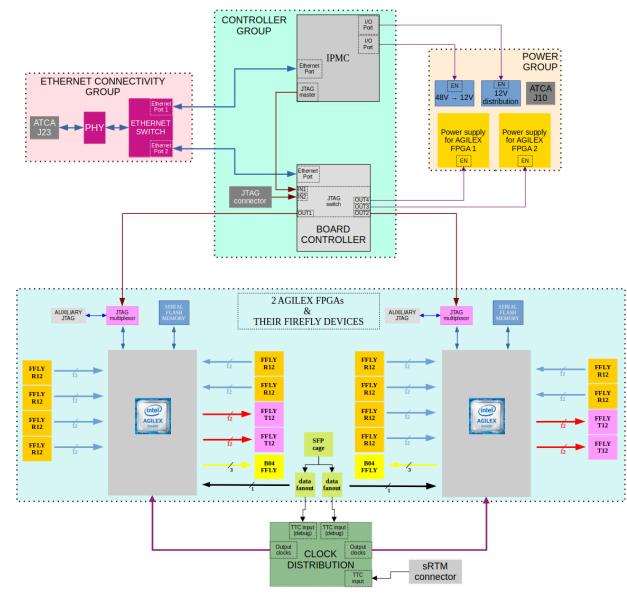

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE


Eye diagram simulations for long traces


• SIGRITY and Hyperlynx simulations

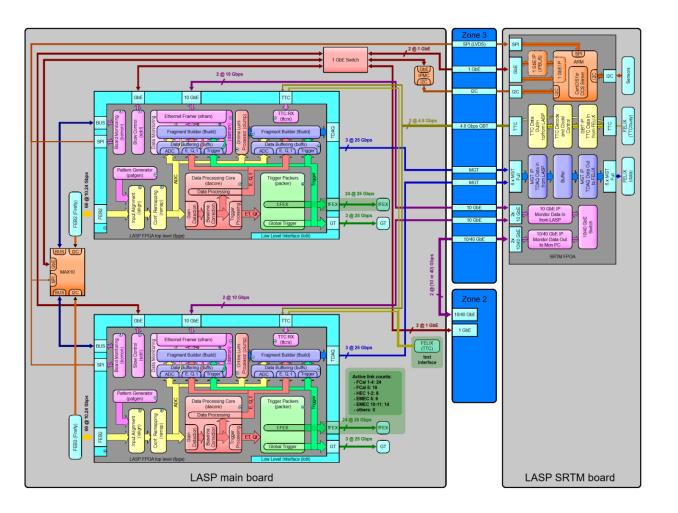
Simulation of different high speed links at 12.5 and 25 Gb/s

- Tests of links longer than 30 cm show bad results
 - Confirmed in simulation when playing with the roughness parameter (PolarInstrument)
 - Copper issue identified



JME 2023: LASP board design

LASP PROTOTYPE board: under development



- What's new compared to the test board
 - Components
 - Processing FPGA : STRATIX-10 -> AGILEX-7
 - 40 % less energy consumption
 - 2 to 3 times more ressources for our needs
 - 25 Gbps Ffex firefly on LASP
 - Updated Zone 3 interface with sRTM (no Ffex data, changed transceiver link counts)
 - Removing DDR4
 - Electronic architecture:
 - Processing data from 3 FEB2/FPGA instead of 4
 - New power block for AGILEX FPGA
 - New dynamic JTAG chain: no more star connection of TMS & TCK signals
 - Clock distribution reviewed: no more VCXO tracking
 - PCB
 - Halogen free material (CERN requirement): EM-528K
 - HVLP copper quality

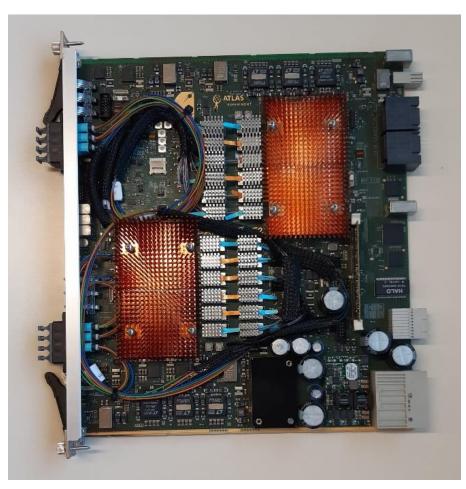
<u>New LASP + sRTM interfaces overview</u>

- FEB2 Input to <u>each</u> FPGA (2/LASP)
 - Up to 384 Calo channels from 3 FEB2's
 - 66 Links @ 10.24 Gbps input (per LASP + SRTM)
 - 1 TTC GBT link @4.8 Gbps (or alternatives @9.6 Gbps)
 - SFP on SRTM with serial fanout to LASP
- Output for L1 (per FPGA)
 - Forward Feature Extractor: ≤24 @25.781 Gbps
 - Global Trigger: ≤ **3** @ 25.781 Gbps
- Output for TDAQ (per FPGA)
 - 1 Interlaken link @ 25.781 Gbps via SRTM
- + monitoring (10 GbE) and ATCA infra

Several design issues addressed

- FFex output fireflies moved from SRTM to LASP (shorter traces, greater reliability)
- TTC distribution choice determined (mentioned on previous slide)
- Updated interface LASP<->SRTM. Expect this to be final version.
- FELIX output will use Interlaken
- 3 FEBs/FPGA
- Switch from Stratix to Agilex family FPGA (ATLAS LAr approval)

	STRATIX 10	STRATIX 10	STRATIX 10	Agilex	Agilex
	option 1	option 2	option 3	option 4	option 5
Nb FEBs / FPGA	4	3	2	4	3
FW resources	TIGHT	ОК	High margin	ОК	High margin
Power	Too High	ОК	High margin	ОК	High margin
Fmax (MHz)	600	600	600	850	850
Original baseline					


• Had successful specs review (15 Sep. '22) and PDR (17 Jan. '23).

- LASP testboard
 - Design and successful development of the testboard based on STRATIX-10
 - Production of 6 LASP testboards in total
 - 4 already produced operationnal
 - Distributed at CERN / CEA Saclay / StonyBrook
 - 2 already produced and being tested
- LASP prototype board
 - Design status of the LASP prototype board
 - Schematic capture being finalized
 - Starting thermal simulations
 - Study of optical fiber routing over the board
 - Routing expected in 2023 Q4
 - Will be tested in 2024
 - Production: 334 boards will be produced by 2026 including 1/4 at CPPM

