

# PCIe400 : Development status



IN2P3 Institut national de physique nucléaire et de physique des particules

> Julien Langouët (CPPM) on behalf of the R&T PCIe400 team CPPM, IJClab, IP2I, LAPP, LPCC, LHCb Online

## Outline

### **Context and general characteristics**

### **Technical developments**

- Cooling solution
- Placement and routing
- Software framework

### Planning

### **Synthesis**

# LHCb acquisition system

### "Triggerless" architecture choice

- Resolve trigger saturation issue with increasing luminosity
- Allow for more flexible algorithm
- Adopted during Upgrade I (2019-2022)



### Context

### **Goals and rationale**

- Similar architecture to Upgrade I : Generic readout DAQ card interfacing 48 custom protocol links (GBT/lpGBT) to 1 commercial protocol link (PCIe Gen5)
- Cope with tighter timing requirement and higher number of channels in LS3 for some subdetectors
  - Bandwidth x4 (400Gb/s)
  - ► Clock distribution *O*(10)ps RMS jitter
- Explore experimental path
  - Integrated network interface (400GbE)
  - Integrated complex data processing (neural network)

### **Target deployment of PCIe400 is during LS3 for upgraded detectors**

Possible interest from Belle II, CTA and Alice collaborations

#### IN2P3 R&D

- Project set up to develop the prototype of PCIe40 next generation
- Funded for 3 years from 2022 to end of 2024

### PCIe400

### **Foreseen characteristics**

- Agilex M-series AGMF039R47A1E2V
- 32GB HBM2e memory on board
  No need for DIMM DDR memory
- Up to 48x26Gbps NRZ for FE
- PCIe Gen 5 / CXL
- QSFP112 for 400GbE (experimental)
- 2 SFP+ for White Rabbit clock distribution or PON fast control
- High precision PLLs <100fs RMS</p>



# **Optical interface**

### **4x Amphenol OBT**

- MPO x24 12 duplex channels
- 1.25G to 26.3G NRZ (match lpGBT requirements)

### 2x SFP+ (10Gb/s)

- TTC-PON OLT/ONU for fast control
- White rabbit for clock distribution

### QSFP112

- 4x112G PAM4
- Direct Attach Cable <3m or opto <100m

### Some links are multiplexed

| Usage             | # FE links |
|-------------------|------------|
| No TFC/WR/400GbE  | 48         |
| WR                | 47         |
| 2 TFC (OLT + ONU) | 46         |
| 2TFC + 400GbE     | 38         |



Amphenol OBT 1.25G à 26.3G NRZ



**QSFP112** 106.25Gb/s PAM4



PCIe400 front-view

JME Caen – 15th Jun. 2023

# **Cooling the board**

## **Power dissipation**

### **FPGA** total power dissipated (TDP)

- Estimation at early stage with limited gateware inputs from developers -> risk of over-designing cooling solution
- Estimated between 120W to 230W
- Need for high performance cooling solution

### Cooling solution study (with LAPP)

- Specification of the airflow and ambient temperature in PCIe server
- Model of a vapor chamber because of low spread resistance and high surface available using COMSOL
- Comparison of an active and passive heat-sink
- Thermal mock-up developed to verify simulation model



PCIe400 - IN2P3

Power (W)

# **Cooling solution design**

### **Outsourcing design prototype**

3 companies responded with interest on our project out of 11 companies contacted

#### **Cecla Metal Process**

- Direct access to thermal engineers
- Low cost of heat-pipe technology compared to vapor chamber with high NRE
- Preliminary CFD study undergoing to find maximum power dissipable with such technology
- Mechanical study for fixation points of heat-sinks



### Heatpipe heatsink illustration



Vapor Chamber heatsink illustration

# **Routing the board**

# **Placement overview**

PCB dimension : 270 x 100mm 2300 components on board

| [                  | CARD LENGTH TABLE    |                    |                        |  |  |  |  |  |  |  |
|--------------------|----------------------|--------------------|------------------------|--|--|--|--|--|--|--|
|                    | LENGTH INTERVAL      | DIM "L"            | DIM "M"                |  |  |  |  |  |  |  |
| PCIe specification | HALF LENGTH          | 162,57<br>[6,400]  | 167,65 MAX<br>[6,600]  |  |  |  |  |  |  |  |
|                    | THREE-QUARTER LENGTH | 248.92<br>[9.800]  | 254.00 MAX<br>[10.000] |  |  |  |  |  |  |  |
|                    | FULL LENGTH          | 306.92<br>[12.083] | 312.00 MAX<br>[12.283] |  |  |  |  |  |  |  |



JME Caen – 15th Jun. 2023

# **Stack-up choice**

### **Highlight constraints**

- >100A on FPGA Core and ~20 power rails from 0.8V to 5V
- 108 differential pairs at 10, 28 and 112Gb/s (PAM4)
- 0.9mm pitch BGA on FPGA
- 1.57mm thickness imposed by PCIe
- Controlled impedance 7 % for 400GbE diff. pairs

### 3 level µvias



### **2** solutions envisaged : 18 layers



### 4 level µvias



# **Power integrity simulation**

### PCB thickness should not exceed 1.70mm (1.57 ±0.13mm) PCIe spec

4 layers of 70μm copper foil for power planes results in 1.78mm PCB finished

### Solution is to reduce power planes thickness from $70 \mu m$ to $35 \mu m$

 Simulation of FPGA core voltage rail (0.8V @200A) using Intel FPGA Agilex I-series layout (4 power stage + controller)

### Voltage drop in power planes



### Simple PCB thermal model gives a ~30°C temperature rise in PCB with 17.8W over 33cm<sup>2</sup>

• 4 layers of 35μm copper foil for power planes results in **1.57mm PCB finished** 

JME Caen – 15th Jun. 2023

#### PCIe400 - IN2P3

# Signal integrity simulation

### Goal

- Check impact of topologies (stacked/staggered µvias, stitching vias, ...)
- Ensure functionality without overdesign

### S-parameter extraction of striplines

 Rapid process to observe reflection due to bad geometry in layout

### **Temporal simulation**

Verify in depth transmission lines functionality

### Comparison 2 layers µvias stacked or staggered









### Comparison 2 layers µvias stacked or staggered

JME Caen – 15th Jun. 2023

PCIe400 - IN2P3

# Monitoring the board

## Several access path

### Goal

- Implement abstraction layers : 'Low Level Interface' to help developers focus only on their core skills
- Ensure testability for reliable production and long term support

### Access to board peripherals are centralized on the FPGA

- Several bus to access FPGA : JTAG, PCIe
- Use of USB-to-I2C cable for early development phase on peripheral evaluation board

PyPi package to manage different bus drivers with same code



# Software framework

### Development with help from LP2i Bordeaux

### **Peripheral components**

Each component can be described by a list of registers with limited number of fields

### Implementation

Take advantage of Dataframes and its manipulation methods in order to efficiently access any register fields.



# Planning

|                                              | 2022 |    |    | 2023 |    |    | 2024 |            |    |      |      |      |
|----------------------------------------------|------|----|----|------|----|----|------|------------|----|------|------|------|
| Task                                         | Q1   | Q2 | Q3 | Q4   | Q1 | Q2 | Q3   | <b>Q</b> 4 | Q1 | Q2   | Q3   | Q4   |
| Design                                       |      |    |    |      |    |    |      |            |    |      |      |      |
| Placing & Routing                            | 6    |    |    |      |    |    |      |            |    |      |      |      |
| Cooling solution design and prototyping      |      |    |    |      |    |    |      |            |    |      |      |      |
| Manufacturing                                | 0    |    |    |      |    |    |      |            |    | 2    |      |      |
| Definition & implementation of unitary tests |      |    |    |      |    |    |      |            |    |      |      |      |
| Prototype Debug                              | 8    |    |    |      |    |    |      |            |    |      |      |      |
| Qualification & Characterization             |      |    |    |      |    |    |      |            |    |      |      |      |
|                                              |      |    |    |      |    |    |      |            |    |      |      |      |
|                                              |      |    |    |      |    |    |      |            | F  | Prot | otyp | be a |

Routing review September **2023** 

### Placing is planned to be finished in June 2023

Delay due to reassignment of pins on FPGA to maximize HBM internal bandwidth

### Routing is scheduled to be finished in September 2023

Delay according to initial planning due to difficult stack-up choice

### PCB manufacturing is longer than expected with european manufacturer

### **Synthesis**

### Hardware

- A passive cooling solution is under discussion with outsource specialists for future design and prototyping
- Stack up is under review with several PCB manufacturer to ensure manufacturing feasibility
- Routing can not start as long as topology is not validated
- Power and Signal integrity simulations are vital to validate layout

#### **Firmware and software**

- A software framework has been implemented for efficient board monitoring based on PCIe40 experience
- Test firmware should be available as soon as prototypes are available

#### **Project development**

- **3** month delay due to stack-up choice and FPGA pinout optimization after Intel schematics review
- Technical design review with CERN planned by end Summer 2023
- LHCb-internal review planned for Q1 2024

# Backup

# **Cooling solution study**

### Air cooling study

- FPGA 160W nominal power dissipation
- OBT Optical transceivers 30W must be studied : high power concentration, placement constraints
- Passive and active (with largest fan that fits >6m/s) comparison
- Nominal ambient temperature 38°C
- Up to 5m/s (980LFM) simulated servers may reach higher flow ?

# Passive cooling solution show better results and is less constraining mechanically



# **Cooling solution : Length impact**

### Low impact of heat-sink length

Full : PCB 312mm / Heat-sink 237x70x23mm 3/4 : PCB 254mm / Heat-sink 179x70x23mm

'GPU' : PCB 268mm / Heat-sink 193x70x23mm



FPGA RthJA comparing 'full' and '3/4' length



## Heatsink mouting points

A backplate can be used on PCB bottom side to mitigate PCB warpage and ensure uniform thermal contact between heat-sink and component



## **Maximize HBM bandwidth**

### HBM is connected to the FPGA fabric thanks to AXI4 bus

- Each HBM pseudo-channel is connected to the NoC through 'targets'
- Each User memory port are called 'initiators'
- Targets and initiators can all be connected thanks to the NoC

### HBM maximum bandwidth (on 1 HBM die) is 358GB/s

- 16 initiators are required to saturate HBM bandwidth (256b @700MHz)
- 1 supplementary initiator might be required for HBM monitoring

### Initiator hardware resource are multiplexed with some GPIO buffers

Limits the number of GPIO usable with related initiator



### Illustration of Assigned GPIO pins preventing use of multiplexed GPIO with Noc initiators using Interface Planner

