

PhD Student Jean SOUDIER Directors: Jérôme BAUDOT & Wilfried UHRING Supervisor: Frédéric MOREL

- Introduction
- Asynchronous flow
- Size variation and estimations
- SPARC design
- Conclusion

Divide by 7 the material budget

New architecture:

- low-power
- high rate
- small pitch

Asynchronous architecture:

- work when needed
- achieve variable bandwidth
- clock less more localized

[1] G. Gimenez, A. Cherkaoui, G. Cogniard, et L. Fesquet, « Static Timing Analysis of Asynchronous Bundled-Data Circuits », in 2018 24th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), mai 2018, p. 110-118. doi: 10.1109/ASYNC.2018.00036.

Synchrone

Asynchrone

Figure 5: Timing waveform for a 2-stage (a) synchronous and (b) asynchronous pipeline.

[1] G. Gimenez, A. Cherkaoui, G. Cogniard, et L. Fesquet, « Static Timing Analysis of Asynchronous Bundled-Data Circuits », in 2018 24th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), mai 2018, p. 110-118. doi: <u>10.1109/ASYNC.2018.00036</u>.

Symbolic view of differents size with 16 pixels (2to1, 4to1 & 16to1)

First designing a column

Results of differents size with 512 pixels (2to1, 8to1 & 512to1)

Circuit	9 levels	3 levels	1 level
Area (normilazed)	1	0,81	0,76
Power consumption (normilazed)	1	0,77	0,64
Reading speed (ns)	12,46	5,8	5,49
Estimate reading speed for one level (ns)	1,38	1,93	5,49
Bandwidth (pixels/100ns)	17	14	15

8.51

Percer	ntage [%)]	م ٤)	Area us Standard	age l cells)			Controller size	Pourcentage of Gcells full (routing cells)
30 25	24,83							1 (9 levels of 2 to 1)	44,31% (limitation, huge congestion)
20		20,01			18,89			3 (3 levels of 8 to 1)	0%
15		-•	-Fixed Priority A (measured)	rbiter		10		9 (1 level of 512 to 1)	0%
10		-•	 Priority Encode estimation of M 	er (linear IOSSS)		PI	E		
0 0		2	4	6	8	10	Controller	size	

[1] J. Soudier et al., « Design of asynchronous ASIC for CMOS pixel sensor readout », 18th "Trento" Workshop on Advanced Silicon Radiation Detectors

Test name	Description	Type of results
Functional	Firing every pixels to evaluate the bandwidth	Time to read all pixels and number of pixels read in 100ns

13 juin 2023

Exploitation results with 330 MHz/cm² hit rate

Test name	Description	Type of results
Classical usage	98 pixels firing during 100 µs	Power consumption and mean hit rate

Fixed Priority Arbiter:

- low-power (no cooling system is needed > 10mW/cm²)
- high rate (less than Ghit/cm²)
- small pitch (achieve 18µm pixel pitch)
- use a 2ns TDC

Suited for experiments:

- ALICE, CMS, ATLAS
- BELLE II, FCCee
- Quantum physic

8 55

Congestion

Max

/Area (mW/cm^2)

3.89

Route

Total DRC WL (ur

Summary table of the flow

Тј	/pe	Min	(ns)	Mea	N (ns)	Ma	X (ns)															
funct	ionnal	4	.29		4.48	4	1.79															
Туре	Ratio rea	ided j	pixel	5 (%)	Mean	(ns)	Ma	X (ns)	NB parti	culs	NB noi	se NE	3 events	NB e	events on	col	Rate (MI	Hz/cm^2/s) Hit/TW (H	its/100ns)		
real			100	.00	7	.79	14	4.52		31	ļ	50	113			7		34.06	;	18		
Coorchate	Seti	up (all)		н	old (all)		C	lock		Design									Power			
snapsnots	WNS (ns) 1	TNS (ns)	FEPS	WNS (ns)	TNS (ns)	FEPS	Insts 4	Area (um^2)) Density (%)	Insts	Area (um^2)	Total (mW)	Total/Area (m)	W/cm^2)	Leakage (mW)	Leak/A	rea (mW/cm^2)	Internal (mW)	Int/Area (mW/cm^2)	Switching (mW)	SW/Area (mW/cm^2)	Clock (m
opt_signof	f <u>0.035</u>		0	0.262		0	<u>334</u>	2865.120	55.13		<u>6224</u>	0.00		6.05	<u>0.00</u>		5.89	0.00	0.07	0.00	0.09	

Column design

Prototype based in an inside matrix shape in 65nm

- Creation of an asynchronous digital flow for Cadence tools
- Conception of a prototype for particule physics with differents sizes of controller
- Creation of a flow and reporting for particule physics to analyse and compare differents chips

C gate

[1] E. Aguénounon et al., « Design and Characterization of an Asynchronous Fixed Priority Tree Arbiter for SPAD Array Readout », Sensors, vol. 21, juin 2021, doi: 10.3390/s21123949.