

SPIDER "Swift Pipelined DigitizER" for timing path measurement of upgrade II LHCb

Co-responsables: Samuel Manen & Philippe Vallerand

Ludovic Alvado, Nicolas Arveuf, Edouard Bechetoille, Christophe Beigbeder, Dominique Breton, Baptiste Joly, Laurent Leterrier, Hervé Mathez, Richard Vandaele

Plan

- Detection, Electronics
- Requirements for new timing path
- √ How to achieve the specifications
 - Digital TDC vs Waveform TDC
- ✓ New Electronics chain
- ✓ SPIDER "Swift Pipelined Digitizer" ASIC
 - Concept, architecture, performances
- ✓ Status of SPIDER development
- ✓ Summary

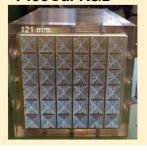
The Upgrade 2 (II) detector

1/3

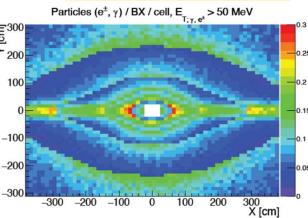
DES SCIENCES

Integrated lumi: from 50 fb⁻¹ in run 3 to 300 fb⁻¹ in runs 5 + 6

Maxi crane coverage:11000 2X40 Tons SPD & PS



SPACAL ▶ Beam direction

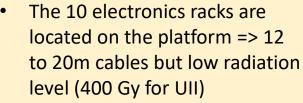

SPACAL W-Polystyrene 20ps@20GeV, 10ps@100GeV

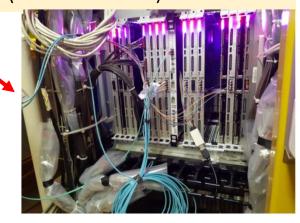
Technologies for PicoCal R&D

The future UII detector: « PicoCal »

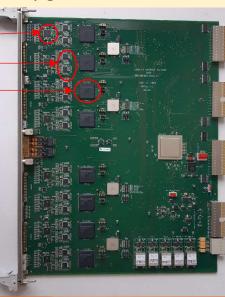
UII detector occupancy

- For the phase 2 upgrade, the central part of the detector will be equipped with SPACAL modules to deal with radiation (up to 1MGy).
- Shashlik will remain in the outer part (< 40kGy).
- In order to limit the occupancy, the size of the modules will be reduced thus their number increased → from 6,000 to ~ 15,000 channels
- Introduction of longitudinal segmentation and double sided readout => ~ 30,000 channels (baseline option)





- 18 crates
- Currently **256 front-end boards** (32-channel each)


The original front-end board (2008-2020)

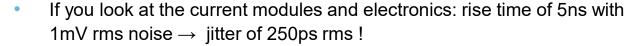
The new front-end board since phase1 upgrade in 2020

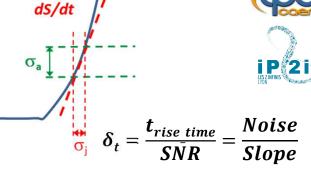
New Front-end electronics expected: 64 channels per FE board

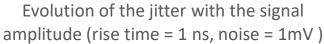
Laboratoire de Physique des 2 Infinis

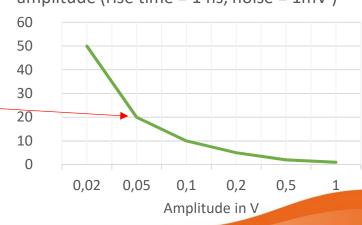
Maxi crane coverage:11000

2X40 Tons


Requirements for new timing path

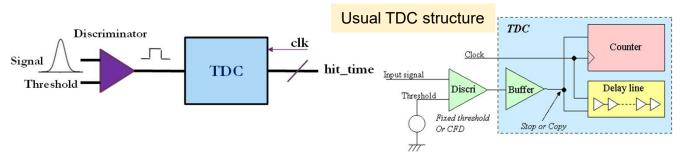

Theoretical electronics time resolution:



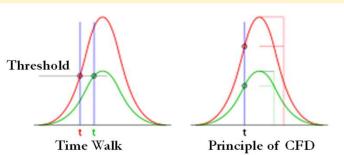

- Target time resolution of 15ps rms @ [1-5 GeV] to distinguish multiple interactions
- Target energy range for time measurement => E_T = [50MeV-5GeV] => range of 100 ...
- Deal with maximum possible channel occupancy : 10% required originally but 50% solutions
 would be much safer

- ⇒ We have to reduce both rise time and noise
- 1ns seems to be a (below the ?) limit for the PMTs so we have to do our best concerning the noise to get the largest possible dynamic range
 - Noise is the sum of detector and electronics contributions

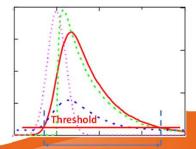
1/4



> Standard Time to Digital Converters chain (TDCs)



- The usual candidates for time stamping of fast signals. They are designed either in the form of dedicated ASIC or integrated inside high-end FPGAs.
- They are self-triggering and can withstand high counting rates
- A TDC has a strictly digital input => a discriminator has to be present to transform the analog signal into digital. It introduces additional jitter and residues of time walk => the overall timing resolution is degraded to the quadratic sum of the discrimination and TDC contributions.


When sending a signal to a discriminator, the time instant "t" of the output level toggling will depend on the amplitude of the signal

→ "Time Walk" effect

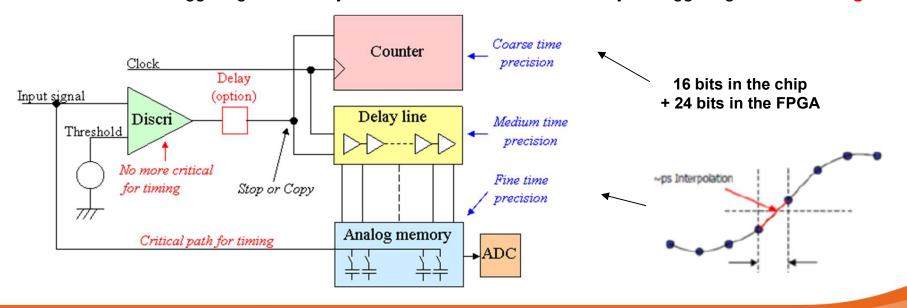
To avoid the Time Walk effect, one has to use a Constant Fraction Discriminator (CFD)

- But this implies that you need to know the value of the peak to apply the threshold!
- Ok for firmware or software when the signal has been digitized but **not in a TDC which does not provide information on waveform**, except under the derivate form of time over threshold (**TOT**) thus with a limited precision (especially because of the asymmetry of the signal edges).

6

2/4

« Waveform TDC » chain

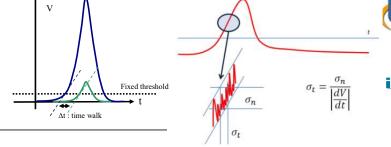

 concept introduced by LAL/IRFU in 2009: association of DLL-based TDC and of analogmemory based Waveform Digitizer

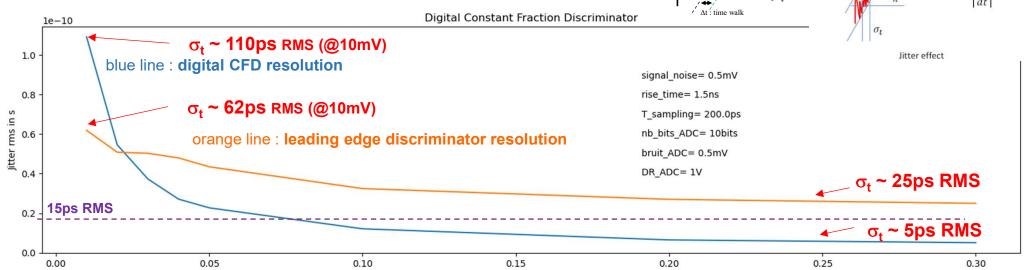
The TDC gives the coarse time of the samples and the samples give the final time precision after CFD interpolation
 resolution of a few ps rms

- Digitized waveform gives access to signal shape...
- All channels are self-triggering, conversely to TDC, discriminator is used only for triggering, not for timing

3/4

Timing jitter versus signal amplitude for large dynamic 100





Set-up : rise time = 1.5ns ; σ_{noise} = 500 μ V RMS

V_{in} ranges from 10mV to 1V

→ discriminator threshold is set to **5mV** (half the minimum signal)

Amplitude in V

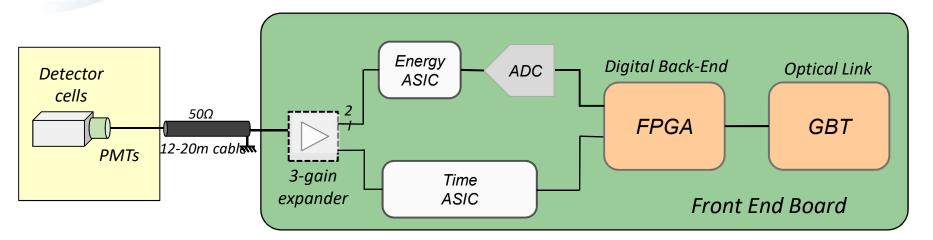
Digital CFD required to achieve the time resolution <15ps for a large dynamic : waveform TDC, a good candidate but limited in counting rate !!

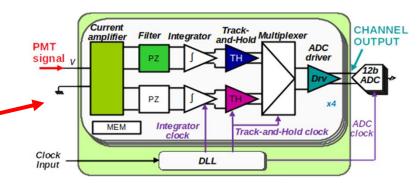
4/4

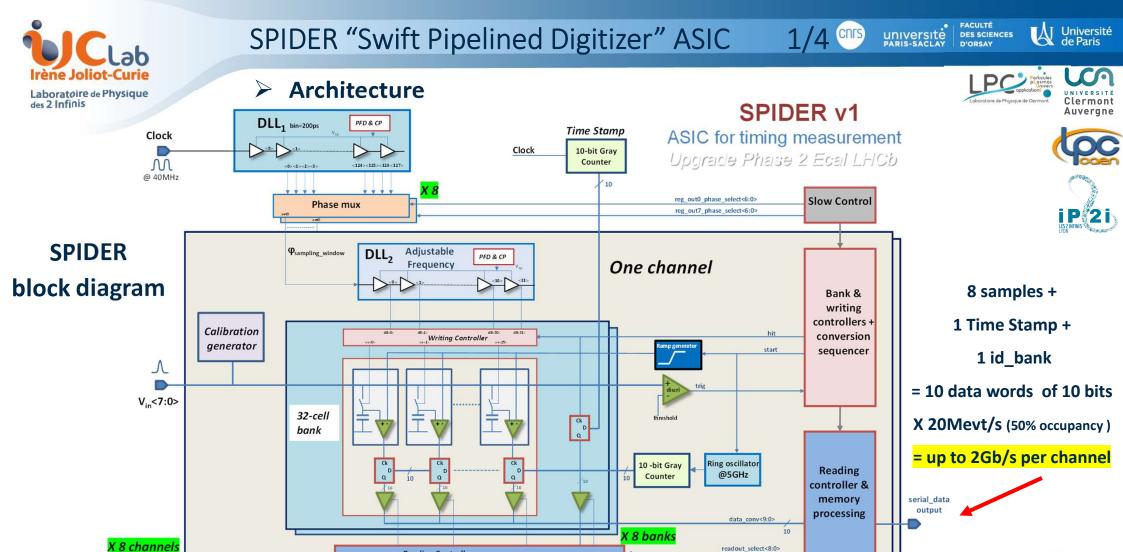
A standard digitizer (like Sampic) is made of a single circular memory bank with a sampling depth of N signal points which limits the counting rate due to conversion dead time

- To increase the counting rate, a multi-bank memory working like a pipeline is required and must run sequentially
- ➤ To implement multi-bank memory with a reasonable size per channel (physical constraints), we define a optimized sampling window to deal with only the interesting part of the signal, which consequently reduces the size of each memory bank
- To reduce the channel data rate, only the necessary samples (8?) for making the dCFD calculation possible are sent to the companion FPGA
 - With this improvements, the pipelined waveform TDC is a good way to address the requirements on timing path

New electronics chain


Chosen architecture



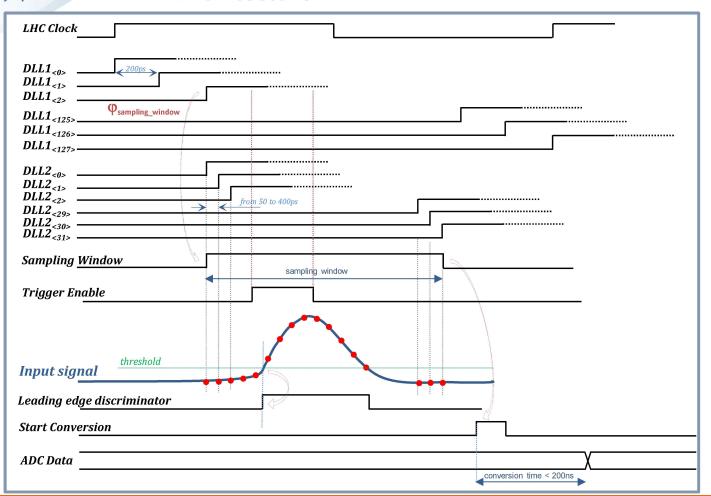


- > Two separated processing paths with dedicated ASICs in the same technology: **CMOS 65 nm**
 - Energy path close to the current ICECAL scheme (mostly analog processing)
 - Independent timing path based on SPIDER waveform TDC
 - => can be used for other application or type of detector
 - For dynamic range compatibilities, **3 different gains** must be provided
 - > 50MeV to 100GeV over 2 gains for energy measurement
 - > 50MeV to 5GeV (single gain) for time measurement

Reading Controller

SPIDER "Swift Pipelined Digitizer" ASIC

> Architecture



SPIDER "Swift Pipelined Digitizer" ASIC

- Technology: 65nm (the most lasting technology, 10 years (?)), 1.2V power supply
- Input signal: rise time from 1ns to 1.5ns, dynamic range V_{in}=[10mV-1V]

Main specifications

- Need for a memory cell (switches & capacitor) compatible with a noise voltage around 0.5mV
- Need of a resolution of 10 bits for the sampling: 10-bit Wilkinson ADC@5GHz to reduce the conversion time (200ns for 10bits i-e 8 clock periods)
- Need for 128-delay-cell DLL1 running @40MHz \rightarrow bin \approx 200ps to tune the beginning of the sampling window
- Need for 32-delay-cell DLL2 running from 80MHz to 640 MHz \rightarrow bin \approx 50ps to 400ps to select the sampling frequency between 2.5GHz and 20GHz

SPIDER "Swift Pipelined Digitizer" ASIC

PFD & CP

4/4 cnrs

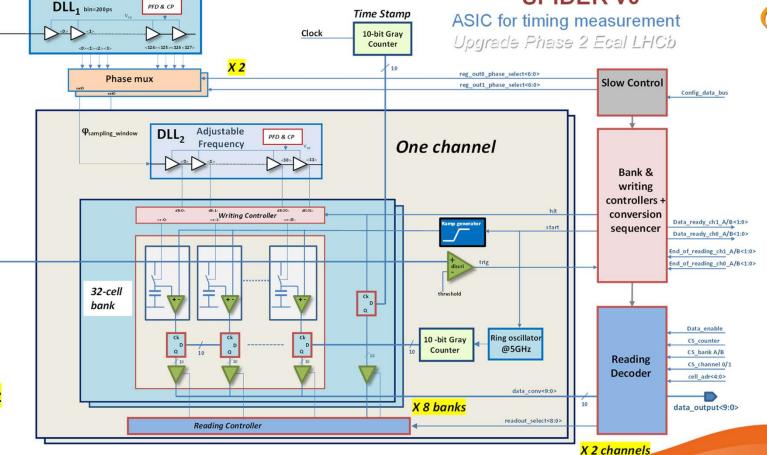
SPIDER v0

First prototype architecture: «2 eightfold-bank channels»

SPIDER first prototype: contains all critical blocks

Clock

M @ 40MHz


1

 $V_{in} < 1:0 >$

Proof of concept:

- **Clock distribution & DLLs**
- Memory cell in 65nm
- **Multi-bank operation**
- 10-bit Wilkinson ADC @5GHz

Status of SPIDER development

> R&T project @IN2P3 2021-2023 (RS: P.Robbe & RT: C.Beigbeder)



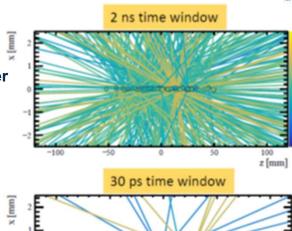
Collaboration of 4 IN2P3 labs (Orsay, Clermont-Ferrand, Caen, Lyon) led by IJCLab and LPC Clermont.

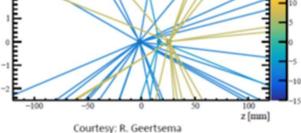
- Very challenging design! Has started six months ago.
- Repartition in work packages for:
 - 1) Delay Locked Loop (DLL1 & DLL2)

- 3) Counting digital part for "10-bit Wilkinson ADC & coarse time" (Gray counters, ring oscillator)
- Slow control & Readout management part (read decoder)
- 5) Phase Locked Loop (not critical for first prototype)
 - The first prototype submission is expected at the **end of 2023**

The idea is to start with few channels of new electronics during run 4: front-end boards, ICECAL65 & SPIDER...

Summary





- For 4D calorimetry, we need to develop electronics with large dynamic range and very good time resolution
 - As shown, the association of the two requirements is a challenge...
- Based on our long experience in the design of analog memories, we feel like the Waveform TDC can be an adequate solution to face this challenge iP 2i
 - Waveform indeed contains all information
 - A low threshold has **no impact on time resolution**
 - Extracting only the most useful samples for the time extraction limits the readout time
 - There is a lot of bandwidth margin for faster signals which may directly reduce the jitter
 - This solution can work for many other types of detectors ...
- Our main targets:
 - Short term:
 - Reduce the electronics noise and increase the dynamic range
 - Reduce the conversion time while keeping the massive parallelism of the ADC
 - Get the best possible time INL and jitter for the analog memory
 - Optimize the output dataflow
 - Longer term:
 - Perform on-chip data compression still allowing external feature extraction
 - Get closer to 100% occupancy
 - Measure both amplitude and time ...

Thank you for your attention!