

Systèmes de Référence Temps-Espace

IDROGEN system

Antoine Back, Olivier Bourrion, Chafik Cheikali, **Daniel Charlet**, Eric Plaige, Paul-Eric Pottie, Monique Taurigna, Cédric Viou

Nancay June 2023

IDROGEN system

- Hardware_Firmware
- FMC mezzanine board
- Trigger-less acquisition system : New-COMET

Mancay : June 2023

IDROGEN board

Mancay : June 2023

- Standard : xTCA for Physic
- Based on an off the shelf system
- Crate controler : MCH fron N.A.T
- Data read-out :
 - Backplane : PCIe 4x gen 3 / ETH 1G/10G
 - Front-side : ETH1G/10G , 2x 10G
- Board configuration Ipbus : ETH0 or SFP+
- Synchronisation : WR
- 2 boards in developement :
 - IDROGEN
 - base on INTELFPGA (IJCLAB)
 - OXIGEN (LPSC
 - Base on XILINX

OXIGEN board

- XTCA board : LPSC development (Julien Bunmy)
 - Base on XILXINX FPGA
 - Base on IDROGEN
 - FMC carrier board
 - WR node
 - Currently in test

Low phase noise WR -PTP : IDROGEN board

- High performance WR low jitter
- High performance data aquisition system
- FMC+ carrier board
- Design & realization by IJCLAB
- Firmware by Nancay Observatory
- Clock expertise ans qualification by SYRTE
- Measures at SYRTE and IJCLAB

- MTCA 4.0 standard, double width full-size
- Stand-alone mode
- VITA57.1 (FMC slot)
 - 160 single-ended I/Os (80 LVDS) and/or up to 10 serial transceivers in a 40 x 10 configuration
- Full WhiteRabbit compliant.
- Front panel conectivity
 - WR SFP+
 - QSFP+ 40G, USB
- Backplane connectivity
 - 1Gbe IPbus,PCI 4x Gen3,
 - IPMB, CLK & trigger lane.
 - RTM connector : J30

IDROGEN : Slow control

de Nançay

IdroGenTools				-	×
Device Tools Help					
🍥 🕋 🗳 놀	🖌 🌔 🕘 🧾				
default values					^
0x0000 : 0x10 0x00 0x06 0x0008 : 0x18 0x15 0x00 0x0010 : 0x15 0x00 0x12 0x0018 : 0x00 0x02 0x00 0x0020 : 0x02 0x00 0xF	0xD0 0x5B 0x20 0x51 0x04 0x02 0x00 0xF1 0x01 0x03 0x00 0xF1 0x01 0x18 0x15 0xF1 0x01 0x18 0x15 0x00				I.
0x0028 : 0x00 0xF1 0x01 0x0030 : 0xF1 0x01 0x1 0x0038 : 0x01 0x21 0x00	Settings		? ×		
0x0040 : 0x06 0x0F 0x00 0x0048 : 0x1B 0x13 0x1 0x0050 : 0x7F 0x01 0x0 0x0058 : 0x00 0x96 0x0 0x0058 : 0x00 0x96 0x0	Select Serial Port	Select Parameters			
0x0068 : 0x00 0x0F 0x1 0x0070 : 0xAA 0x02 0x0 0x0070 : 0xAA 0x02 0x0	COM4 🔻	BaudRate: 384	• 00		
	Description: USB Serial Port	Data bits: 8	•		
0x0000 : 0x10 0x00 0x00	Serial number: A10572KGA	Parity: Non	e 🔻		
0x0109 : 0x15 0x00 0x1 0x0113 : 0x00 0x02 0x00 0x0116 : 0x02 0x00 0x5	Location: \\.\COM4	Stop bits: 1	•		
0x0125 : 0x00 0xF1 0x0 0x012E : 0xF1 0x01 0x1 0x012E : 0xF1 0x01 0x1 0x0137 : 0x01 0x21 0x0 0x0137 : 0x06 0x06 0x06	Vendor Identifier: 403 Product Identifier: 6001	Flow control: Non	e 🔻		
0x0147 : 0x1B 0x13 0x1 0x014F : 0x7F 0x01 0x0 0x0157 : 0x00 0x96 0x0 0x015F : 0x08 0x00 0x0 0x0167 : 0x00 0x0F 0x1	Additional options				
0x0171 : 0xAA 0x02 0x00 0x0184 : 0x90 0x00 0x00 >	Local echo				
Connected to COM13 : 38400, 8, None,			Apply		
IdroGenTools				-	×
Device 10015 He Slow contro			1	~	
	Monitoring ON	OFF			
IDROGEN Monito			EMC connector		
Ports init don	on Te	mperatures	Enable VAdjust	t	
LMK48028	status 515538 status	20 20 20			

IDROGEN MMC

- Software for µC ATMEGA128
- Base on MMC-DAQGEN package develop by LPSC laboratory
- IDROGEN Tools
 - USB interface
 - For configration and board debug
 - Develop in C++ with QT5 (LINUX and Windows)
- IDROGEN Config
 - For remote configuration & Status
 - Ipbus link
 - Develop in C++ with QT5 (LINUX and Windows)
- Board configuration and status :
- Power, PII configuration : LM04828 & SI5338,
- µC : ATMEGA configuration,RTM & FMC configuration

Mezzanine for IDROGEN

- The motivation of the development of a new mezzanine instead of an off-the-shelf ADC mezzanine :
 - includes : its own PLL.
 - ADC clock source : External clock
- Mezzanine main features :
 - VITA57.1 (FMC)
 - ADC 9680
 - 2 channels
 - 14 bits
 - 1 GSPS
 - JESD204
 - 2GHz analog bandwidth
 - External trigger in

IDROGEN + mezzanine FMC ADC 500MSPS

- Bandwidth 500 MHz to 1.5GHz
- Synchro & timing by WR
- Data transfer 2x 10G Ethernet
- Configuration by IPBus 10G
- ADC 1GSPS version currently in test

Systèmes de Référence Temps-Espace

SYRTE

Observatoire

IDROGEN + mezzanine FMC ADC 500MSPS

Signal at 1.8GHz , 3rd Nyquist band

High stability frequency distribution

- Master oscillator distribution
- Implementation of a synthesizer on mezzanine FMC : SI5362
 - Phase jitter 55/100 fs
 - Generation of any frequency :
 - 8KHz < F > 2.75GHz
- Collaboration with accelerator department
- RF filter outside
- Phase noise evaluation with EBV
- Available end 2023

IDROGEN : Parallel data bus interface

ARF6 Series - Socket, Vertical Orientation

- 16 bit LVDS input; 8 bit LVDS output
- MAX 9180 driver
- Ultra low noise jitter 23ps
- 400Mbps by link
- SAMTECH ARC6 connector
- 12GHz
- Off the shelf cable
- Signal services : CLK out, I2C, test, ..
- Available mid 2023
- Marie-Lise Mercier LP Clermont rooting

IDROGEN : Firmwares

Laboratoire de Physique des 2 Infinis

WhiteRabbit

Development of CERN & GSI

Adaptation for ARRIA 10

IpBus 1G & 10G

- Development by LPSC laboratory
- Adaptation by IJCLAB for ARRIA 10
- Streamer UDP 1G/10G
 - IJCLAB development
- PCIexpress v1
 - Based on INTEL-FPGA
- PCIexpress v2 (in development)
 - Based on CERN LHCb development
 - High and continuous data rate acquisition

🖲 GBT 2 PCIe

Based on CPPM LHCb for PCIE40 development

- JESD 204B for high speed ADC
 - Base on INTEL-FPGA IP
- Parallel 64 data acquisition
 - For 2 ADC 125MBPS 16bits
- IpBus on WR link
 - One optical link : timing, synchronisation, configuration, data readout
 - IJCLAB development

IDROGEN PCIe V1

Based on INTEL IP

Gen 3 4x End-point mode, 128-bit layer interface payload 256 bytes

Can perform

Access of the PCIe host with the Bar0 to Bar5 interfaces

Access of FPGA logic by Avalon MM interface

DMA transfers

PAON IV : configuration in development

Interferometer radio : 4 dishes of 5m

Distance inter-dish without limitation

- 3D mapping of atomic hydrogen
 - 4 IDROGEN board
 - High bandwidth : 500MHz
 - 8 ADC 14b 1GS/s
 - Synchronised by WR

Reconstructed map at 1420.4 MHz from PAON-4 Nov.2016 observations

IDROGEN firmware PAON IV : readout architecture

Laboratoire de Physique des 2 Infinis

IDROGEN firmware : Ethernet readout

Observatoire SYRTE

IDROGEN firmware : Data readout

Irène Joliot-Curie

IDROGEN PICMIC detector: readout architecture

- PICMIC : high time and spatial resolution detector
- Pixel detector
 - Position : Parallel PICMIC chip readout bus (IP2I)
 - Time : PICOTDC with GBT readout (IPNL)
 - Acquisition : IDROGEN
 - Synchronization and time tagging by WR
 - Readout and Command & Control by PCIe

Laboratoire de Physique des 2 Infinis

IDROGEN firmware PICMIC : readout architecture

Data readout

PCIE Gen 3 4x End-point mode, 128-bit layer interface payload 256 bytes

Laboratoire de Physique

Irène Joliot-Curie

des 2 Infinis

DMA readout (INTEL IP)

Data acquisition

- Spatial data : LVDS parallel interface (IJCLAB firmware)
- Timing : GBT (CPPM firmware)

Trigger-less acquisition system : New-Comet

Mancay : June 2023

Trigger less acquisition system : New-COMET

- Trigger-less detector acquisition system
- Continuous signal coding : 4 x 125MSPS 16bits
- WhiteRabbit time tagging

oservatoire

- High level treatment performed by the acquisition software
- Energy and timing correlation made by acquisition software

Trigger less acquisition system : New-COMET

- Off the shelf mezzanine
- No dead-time data transfer
- 10G Eth or PCIe gen3 4x
- Data memory with sliding window
- Data taging by WR
- 4ns timing resolution
- Jitter ~13ps/200ps RMS at 1000s

Conclusion

- 15 boards have been produced
- For 5 laboratories of IN2P3 and INSU institutes
- New collaboration with KEK accelerator
- New version will be designed due to components obsolescence

Design Autumn 2023

- Very versatile system
- State of the art for the WR node performance : accuracy and precision
- Data transfer functionalities :

informatics protocol : PCIe, ETH1G/10G

Dedicated : GBT, JESD204B

Customize functionalities could be implement using dedicated FMC mezzanine or off the shelf mezzanine : DAC, ADC, I/O, serial I/O, ...

IDROGEN : Clock tree

- LMK4828 clock in :
 - White-Rabbit module.
 - SMA connector.
 - RMT30 connector : CLK0.
 - FMC connector : LA_CLK.
 - AMC connector : TCLKB.
- LMK4828 clock out :
 - FMC connector JESD204 compliant : Clk2_bidir, Clk3_bidir .
 - RTM : CLK1
 - FPGA : CLKREF, clk.
 - AMC_CLK2
- FPGA receives also direct clocks from different sources :
 - FMC connector
 - AMC connector
 - RTM connector

IDROGEN : WhitRabbit implementation

The WhiteRabbit IDROGEN hardware is based on CERN open hardware with Enhancements

- Based on LMK4828 synthetiser
 - Ultra low noise clock jitter Cleaner with Dual Loop PLL
 - 90fs RMS jitter
- DDMTD internal of FPGA (placement with constraint)
- Two generated local clocks :
 - DDMTD source (comparison between WR master clock from SFP)
 - PLL source with phase adjustment

IDROGEN Enhancements

- PLL selection
- VCXO Frequency
- Input frequency for DDMTD
- Tx/Rx routing equalisation

Backup

Mancay : June 2023

IDROGEN firmware architecture

- The firmware is developped using QSYS system integration tools.
- Two QSYS Avalon masters : IPBus & WR
 - WhiteRabbit PTP core, Avalon master bus
 - Manages all functionalities for the WR
 - Manages the Etherbone protocol
 - Interfaces to FPGA core by Wishbone to Avalon interface.

- Slow-control
- Data read-out
- Users Logic, interface to FMC connector.
 - Avalon Slave interface.
 - Avalon Streaming source to data-transfer module
- Data transfer, data read-out
 - 2 x 10G Ethernet
 - PCIe Gen3 x4
 - 40G Ethernet (if IP available at IN2P3)

WiteRabbit firmware

- All numerical module fully included in FPGA
- Fully coded in VHDL (including phy)
- Based on Lattice-Micro32 µ-controler (writing in VHDL code)
- Communication to FPGA core with Wishbone interface.
- Interface Wishbone to Avalon (LAL/Obs. development)
- Open firmware
 - At the origin developed for Xilinx.
 - Development for ALTERA
 - ARRIA2 & 5 GSI (recently 10)
 - ARRIA 10 Nancay/LAL
- System clock 62.5Mhz
 - Future development 125Mhz

- Standard : xTCA for Physic
- Based on an off the shelf system
- Crate controler : MCH fron N.A.T
- Data read-out :
 - Backplane : PCIe 4x gen 3 / ETH 1G/10G
 - Front-side : ETH1G/10G , 2x 10G
- Board configuration Ipbus : ETH0 or SFP+
- Synchronisation : WR

