
Système d’acquisition de données sur

RedPitaya avec module de traitement High Level
Synthesis (HLS)

1

Michel Gros, Hervé Le Provost,

Journées des Métiers de l'Electronique de l'IN2P3 et de l'IRFU, juin 2023

2

History - Motivation

=> Choice to evaluate the RedPitaya ecosystem – same
type as Raspberry pi but with programing logic

Boites cali
4 ADC channels– 16-bits - optimal sampling @5 MHz
Mother board CEA + Mini-Module AVNET Virtex-5 FX
Data acquisition over Ethernet - software client/server
Samba CEA –no embedded OS –

mini-modules AVNET Virtex-5 FX obsolete
Replaced by mini-modules AVNET Zynq with
firmware/software update – Acquisition validated but
DDR bug on mini-module – solution abandoned

The CALI

acquisition module

user’s guide

RedPitaya

3

Connecteurs SATA

16 single ended or 8 differential digital I/Os

SPI, UART, I2C, 4 x slow ADCs,4 x slow DACs

Documented in details here: https://redpitaya.readthedocs.io/en/latest/
Git for developers here: https://github.com/RedPitaya/RedPitaya

Full support for ecosystem: embedded linux– client/server RedPitaya
protocol – Applications: oscilloscope, signal generator, spectrum
analyzer…(RedPitaya) Power Analyzer…(community) oriented radio -
a lot of accessories – claim to be open-source platform

RedPitaya Cali - principle

4

Processing
System

ADC
LTC 2145

#14-bits
@125MHz

header
AXI Bus

sample 1/2
sample 3/4

BRAM#0

header

sample 1/2
sample 3/4

BRAM#1

ADC
readout

logic

Channel A

Channel B
FIFOs

ADC clock

Local
OSC.

Hardware
Factory default

DAC
#14-bits

@125MHz

IPs
RedPitaya

DAC

DAC
PWM

Xilinx
XADC

E2 connector

4 analog
outputs

4 analog
inputs

ZYNQ Z010

Cali system: based on bare
RedPitaya hardware – specific
Cali firmware/software
installation – embedded Linux –
specific RedPitaya IPs (DAC
PWM/DAC…) added – update
software for Samba host –

Ext. clock (E2)

RedPitaya Cali – developments 1

5

Embedded linux: « Réalisation du système pour RedPitaya sur SD-card » G.
Goavec-Mérou, J.-M Friedt – based on Buildroot – no difficulty

Native compiler for ARM: to develop RedPitaya application on MAC (no cross-
compiler for ARM) or to easily compile on target– Native compiler for RedPitaya
Cali via crossTool-ng – depends on embedded linux – Hard /long to generate –
but provided with SD RedPitaya Cali card - https://github.com/crosstool-
ng/crosstool-ng

FPGA PL
FPGA PS

Linux
To Samba via

Ethernet
ADC

from the

detector

DAC,

DIO

• Transmit the ADC data via ethernet sockets

• Manage all things related to the data acquisition

Language C/C++

Native compiler running inside the RP itself

• Event detection

• Create Ethernet payload

• Transmit the ADC data via Ethernet sockets

• Manage all things related to the data acquisition

• Read the ADC, create ethernet payload

• Output some signals (-> synchronisation)

Language VHDL/SystemVerilog

Language C/C++ (HLS) with pragmas for synthesis

Presentation Part 2

RedPitaya Cali – developments 2

o To increase the number of channels to read, use several RedPitaya working in parallel

o Some FIFOs in the process
 samples from different RP arrive at different time in Samba.
 we need to be sure that a given sample (i.e. with a given timestamp) from a given RP corresponds

to the samples of the other RP which have the same timestamp

o Also, the clocks of all RP from the 125MHz local oscillator have not exactly the same frequency…

o Then we have to synchronize several RedPitaya, both for the clock and for the timestamp.

o 1 RP will be “master”, and the others will be “slaves” (to be declared in the setup of Samba)

o Timestamp synchronization
 when Samba sends a START, the master sends a “timestamp reset” to the slaves, and resets

simultaneously its own timestamp;
 the physical link is made by a common SATA cable

o Clock synchronization
 2 resistances to move to configure a RP as slave
Default out of box is master configuration

o Limitation on the total sampling rate: have to lower the clock (or, computers can also run in
parallel)

6

Many-channels DAQ: SATA daisy chain

7

Master Slave Slave

Same programing

Start
+ sampling clock

RedPitaya Cali – setup example

8

Master

Slave

Synchronization
daisy-chain

Many-channels DAQ: SATA daisy chain

NEWS-G New Experiment for Wimp Search, with Gas
First installation with 11 channels / 6 RedPitaya June 2023 @University of
Birmingham (Michel) - Validated

Frequency spectrum : 11 channels – RedPitaya Cali/Samba DAQ 9

RedPitaya Cali - Summary

10

No hardware to develop: a DAQ system with high speed DAC is up and running
with off-the shelf hardware, a flashed SD card and a host configured with Samba
(MAC) or Samix (Linux PC)
System delivered as a package - Samba/Samix is configured after installation for 1
board/2 channels

Active RedPitaya Eco-System
STEMlab 125-14 Low Noise Starter Kit

STEMlab 125-14 External Clock Starter Kit
STEMlab 125-14 X-Channel System (Scalable multi-channels)
SIGNALlab 250-12
SDRlab 122-16… (16-bits)

Scalable DAQ

Data throughput: about 400 Mbps (TCP/IP or UDP) limited by Zynq PS (no jumbo
frames)

Next step is to add a trigger: Host running Samba may be not powerful enough to
filter data for high data rate/multiple channels - not enough power with the ARM
processor@666 MHz – Study to implement it in the PL with HLS C/C++ synthetizer

High Level Synthesis (HLS) typical design

11

Zynq
Processing

System

AXI Stream/DMA

HLS IP
C/C++

AXI
Crossbar

HP0

HP1

HLS IP
C/C++

HLS IP
C/C++

Video
IP

HDMI

HLS typical design: Co-processing for Zynq PS – input/output stream processing
and IP configuration via AXI lite
A lot of support/example designs from Xilinx and developers.
Digilent zybo-z7 (oriented video processing) - OpenCV Video Libraries in Vivado
HLS. https://digilent.com/reference/programmable-logic/zybo-z7/start

AXI Lite

Students Master Paris-Saclay/Ensta: efficient to develop with HLS complex
algorithms even without electronic background – HLS reports for pipeline/latency
are detailed – experience in HDL programing may be a bonus

But what is the step to replace VHDL/Verilog/SysVerilog by HLS ?

HLS Cali Redpitaya – First step 1

12

Processing
System

(PS)

header
AXI Lite

Bus
sample 1/2
sample 3/4

BRAM#0

header

sample 1/2
sample 3/4

BRAM#1

ADC
readout

logic

HLS IP
ping-
pong

Manager

HLS protocol
“ap_none” (electronic signals)

How to write a Finite State Machine (FSM) as in VHDL/Verilog?

PS/IP “Start IP/IP done” protocol

HLS Cali Redpitaya – First step 2

13

void bramRouting (uint4 *Web_in, uint32 *Ain, uint32 *Din, uint32 *localErr, uint32 *Dout…) {

#pragma HLS INTERFACE ap_none port= Web_in
#pragma HLS INTERFACE ap_none port= Ain
#pragma HLS INTERFACE ap_none port= Din
#pragma HLS INTERFACE ap_none port= Dout
…
#pragma HLS INTERFACE s_axilite port=localErr bundle=PARMS
#pragma HLS INTERFACE s_axilite port=return bundle=CONTROL_BUS
#pragma HLS INTERFACE ap_ctrl_hs port=return

Electronic signals bus size defined by type

Parameter passed by processor via AXI memory access

Start/done IP via AXI
memory access

mainLoop: while (1) {

#pragma HLS PIPELINE II=1

wrBuffers(Web_in, Ain, Din, localErr, Dout…);

}//infinite mainLoop

}

Identify structure to add constraints via pragmas in HLS

Initiation Interval – While loop should be evaluated each
clock cycle – depending on design, no clock cycle can be lost
or it may be broken

IP Done=1 If IP is configured in autoStart mode via AXI at initialization,
it will restart automatically but with one clock delay

HLS PIPELINE II=1 is a constraint for the synthesizer – it does not mean, it will be satisfied
but if violated, it will be reported with explanations

Output of the synthesis is a Vhdl/Verilog code – generated code format can be
parametrized but it is hard to debug at this level and not foreseen by the XILINX design
flow

HLS Cali Redpitaya – First step 3

14

void wrBuffers (uint4 *Web_in, uint32 *Ain, uint32 *Din, uint32 *localErr, uint32 *Dout…) {

static STATE_BRAM_CIBLE stateBram = STATE_BRAM_0;

uint4 W;

uint32 A; uint32 D, D0 , D1;

uint32 val_in; uint16 v;

//inputs

A = *Ain; W = *Web_in; D = *Din; D0 = *Din_0; D1 = *Din_1;

//FSM to control the BRAM_0 & BRAM_1 data routing

Switch (stateBram) {

case STATE_BRAM_0:

*Aout_0 = A; *Web_out_0 = W; *Dout_0 = D;

//Once Cali wrote a packet, it should update the BRAM status to full @0

if ((A == 0x00000000) && (W != 0)) {

if (D != BRAM_FULL) {

*localErr = ERR_WR_BRAM_0_FULL;

}

*Dout = BRAM_FULL; //block Cali in the mean time

stateBram = STATE_BRAM_READ_STATUS_PIPE_0;

} else {

*Dout = BRAM_FREE;

stateBram = STATE_BRAM_0;

}

break;

case STATE_BRAM_1:

*Aout_1 = A; *Web_out_1 = W; *Dout_1 = D;

Keep the value between two calls – initialized to STATE_BRAM_0

4-bits bus

Can be access from PS via memory access

Clock is not explicitily defined but if HLS PIPELINE II=1 is satisfied, it is same as

process (clk) and case/when VHDL FSM

Tested and working with Cali
RedPitaya/Samba acquisition

Electronic signals

HLS Cali Redpitaya – Second step 1

15

Processing
System

(PS)

header
AXI Lite

Bus
sample 1/2
sample 3/4

BRAM#0

header

sample 1/2
sample 3/4

BRAM#1

ADC
readout

logic

HLS IP
ping-
pong

Manager

HLS protocol
“ap_none”

PS/IP “Start IP/IP done” protocol

HLS IP Trigger step 0

HLS protocol
“ap_fifo”

XILINX
FIFO

HLS IP Trigger step 1

HLS protocol
“ap_fifo”

ADC Samples

Threshold

signal@scope

HLS Cali Redpitaya – Second step 2

void adcTreatLvl2 (volatile uint32 *threshold, volatile uint32 *calculated, volatile uint32 *fifoIn, volatile

booleen *trigOut) {

#pragma HLS INTERFACE ap_fifo port= fifoIn

#pragma HLS INTERFACE ap_none port= trigOut

#pragma HLS INTERFACE s_axilite port= threshold bundle=PARMS

#pragma HLS INTERFACE s_axilite port= calculated bundle=PARMS

#pragma HLS INTERFACE s_axilite port=return bundle=CONTROL_BUS

#pragma HLS INTERFACE ap_ctrl_hs port=return

loopInfinite: while (1) {

#pragma HLS PIPELINE II=2

findSig(fifoIn, threshold, sample, calculated, trigOut);

}//loopInfinite

}//adcTreatLvl2

Fifo input interface (ef, data, read signals)

At least 1 fifo read every 2 clock cycles requested

Trigger output - oné wire

16

HLS Cali Redpitaya – Second step 3

void findSig(volatile uint32 *fifoIn, volatile uint32 *threshold, volatile uint32 *calculated, volatile booleen *trigOut) {

…

float average,norme=1.0/(float)DIM_BUFFER;

static int somme=0;

static uint32 intAverage;

static booleen toggle,plein=0;

static short sampleTab [DIM_BUFFER];

static int l=0,p=0;

fifoData = *fifoIn;

if ((fifoData & 0xffff) == 0)

val = (short)((int)0x8000 - (int)((fifoData>>16) & 0xffff));

else val= (short)((int)0x8000 - (int)(fifoData & 0xffff));

sampleTab[l++] = val;

…

if(plein) {

if(l == 0) somme = somme - sampleTab[0] + sampleTab[DIM_BUFFER-1];

else somme = somme - sampleTab[l] + sampleTab[l-1];

} else somme += sampleTab[l-1];

average = somme * norme;

…

intAverage = (uint32)average;

if ((intAverage > *threshold) && (intAverage!= 0x8000))

*trigOut = 1;

else

*trigOut = 0;

}//findSig

Extract 2 samples (32-bits) from Fifo

Accumulate sample

Trigger output Tested @scope and working

17

Average over last
DIM_BUFFER

sample

Threshold

Static: Keep the
value from one
call to the next

one

HLS Cali Redpitaya – Summary

18

Replace VHDL/Verilog/SysVerilog: after a learning curve, it is realistic even
if you feel at start it would be much faster to code in HDL – in HDL, you
code one implemented solution, in HLS you code an algorithm and explore
with pragmas different implementations

Open FPGA programming to physicist and software developers:
straightforward for AXI stream pipelined data processing – Ease exchange
for instance to establish a model of a FPGA code in a software system

Next step for RedPitaya Cali: add some additional filtering to the threshold
trigger – extract the ADC samples and build the Ethernet packet payload

