

in theory and in colliders....

Sezen Sekmen, Florida State University Theorie LHC France / GDR Terascale IPN Lyon - 06/04/2010

Contents

- Yukawa unification
- Introducing SO(10) SUSY GUTs
- Dark matter implications
- SO(10) SUSY GUTs at colliders (Tevatron and LHC)

SUSY GUTs

SUPERSYMMETRY:

- Hierarchy problem and divergences 🗸 • EWSB 🗸
- More fundamental
- framework 1 • Dark matter 🗸
- · Gauge coupling
- unification 1

SUPERSYMMETRY:

- Hierarchy problem and divergences 🗸
- More fundamental • EWSB 🗸
- framework 1 • Dark matter 🗸
- · Gauge coupling
- unification 🗸 · Yukawa coupling
 - unification ???

Yukawa unified

Setting the stage

At the GUT scale 3rd generation Yukawa couplings should unify at tree level: $y_t^G = y_b^G = y_\tau^G = y$

Setting the stage

At the GUT scale 3rd generation Yukawa couplings should unify at tree level: $y_t^G = y_h^G = y_\tau^G = y$

At the weak scale m_t/m_b mass relation should hold

$$\frac{m_t}{m_b} = \frac{y_t v_u}{y_b v_d} = \frac{y_t}{y_b} \tan \beta$$

Setting the stage

At the GUT scale 3rd generation Yukawa couplings should unify at tree level: $y_t^G = y_h^G = y_\tau^G = y$

At the weak scale m_t/m_b mass relation should hold

$$\frac{m_t}{m_b} = \frac{y_t v_u}{y_b v_d} = \frac{y_t}{y_b} \tan \beta$$
$$\sim 1 \implies \sim 50$$

One group to rule them all...

Unification based on SO(10) Lie group is a highly motivated possibility.

In SO(10) SUSY GUTs:

- All matter in one generation reside in a single, irreducible 16dimensional representation.
- Two Higgs doublets necessary within the MSSM reside in a single irreducible 10-dmensional representation.

J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974); H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974). H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974); S. Weinberg, Phys. Lett. B91, 51 (1980)., etc.

Reviews:

R. Mohapatra, hep-ph/9911272 (1999) and S. Raby, in Phys. Rev. D66, 010001 (2002).

- Offers a unified framework
- 16 dim representations naturally contain right-handed neutrino (RHN) states. Upon SO(10) breaking they become SM gauge singlets and acquire a Majorana mass $M_N \sim 10^{10-16}$ GeV. This is necessary for seesaw mechanism which generates non-zero left-handed neutrino masses in accordance with current measurements.
- Structure of the SO(10) neutrino sector leads to a successful theory of baryogenesis via intermediate scale leptogenesis
- GUT scale consistent with bounds from proton decay

The superpotential of unbroken SO10 contains the following term $\ddot{f}^{0} \supset y\psi(16)_{3}\phi(10)_{H}\psi(16)_{3} + ...$

which shows that Yukawa couplings of each generation should be unified at the GUT scale at tree level.

 $y_t = y_b = y_\tau = y_{v_\tau} \equiv y$

Several % corrections arise at the loop level.

Degree of Yukawa unification is given by

 $R = \max(y_t, y_b, y_\tau) / \min(y_t, y_b, y_\tau)$

Requirement of Yukawa unification constrains the weak scale realization of the SO(10) SUSY GUTs and defines their signature phenomenology.

Breaking the SO(10)

- At Q = M_{GUT}, SO(10) SUSY is valid.
- SUSY breaking via gravity mediation.
- At M_{GUT}, SO(10) breaks via a Higgs mechanism or a mechanism involving compactification on 5D or 6D to the SM gauge group.
- Effective theory between $M_{GUT} M_{SUSY}$ is MSSM or MSSM+RHN.
- Note that rank of SO(10) = rank of G_{SM} + 1:
 - There is an extra $U(1)_{\chi}$ factor broken at some high scale M_{χ} .
 - This extra symmetry has its effects on scalars and Higgs masses.
 - m_D, the magnitude of the D terms in U(1)_X scalar potential contributes to the definition of GUT scale sfermion and Higgs mass parameters. It is a free parameter.

Simple parametrizations

At the GUT scale...

- m₁₆: common SSB scalar mass
- m_{1/2} : common SSB gaugino mass
- m₁₀ : common SSB Higgs mass
- m_D : U(1)_X D term magnitude
- A₀, Trilinear gauge coupling

tanß: Ratios of VEVs

1. Higgs splitting (HS): $m_{O,E,U,D,L,N}^2 = m_{16}^2$ $m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$ 2. Full D-term splitting (DT) $m_{OFU}^2 = m_{16}^2 + M_D^2$ $m_{D,L}^2 = m_{16}^2 - 3M_D^2$ $m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$ $m_N^2 = m_{16}^2 + 5M_D^2$

 $g_{\mu} - 2$ measurements favor sign(μ) positive.

Baer, Kraml, SS and Summy, JHEP 0803 (2008) 056 [arXiv:0801.1831] Baer, Haider, Kraml, SS and Summy, JCAP 0902 (2009) 002, [arXiv:0812.2692] Baer, Kraml and SS, JHEP 0909 (2009), [arXiv:09080134]

- Input HS or DT parameters at the GUT scale.
- Input measured values of EW observables at low scale.
- Start RG running at m_z using full 2-loop RGEs for for the soft terms, and get the solution.
- Check degree of Yukawa unification R.
- Use Markov Chain Monte Carlo (MCMC) technique to efficiently find parameter space reasons with good Yukawa unification (i.e.: < 5-10%)
- Also check DM relic density and EW precision observables: Ωh^2 ; $\Delta \rho$; $g_{\mu} - 2$; $BR(b \rightarrow s\gamma)$; $BR(B_s \rightarrow \mu\mu)$; $\sigma_{sc}(\chi_1^0 p)$

Spectrum calculator: ISAJET/ISASUGRA DM, EWPO: micrOMEGAs

Yukawa-unified regions

 $\begin{array}{l} R \leq 1.10 \\ R \leq 1.05 \\ R \leq 1.10 \ \& \ \Omega \leq 0.136 \\ R \leq 1.05 \ \& \ \Omega \leq 0.136 \end{array}$

Consistent with the relations predicted by radiatively-driven inverted scalar mass hierarchy

DT to DR3

The full D-term (DT) splitting case does not give good Yukawa unification. So we proposed the DR3 scenario which has: \checkmark Full DT splitting case (including a RHN with mass scale 10¹³ GeV). \checkmark Additional non-universality of 3rd generation scalars – now we have m₁₆(1,2) \neq m₁₆(3).

DR3 space

Flavor changing neutral currents

DR3 solutions are 99.7% consistent with BR(b -> sy) and BR(B -> $\mu\mu$) measurements.

Dark Matter relic density

 $\Omega_{\mathscr{H}}h^2$ is generally too high. Few compatible solutions due to efficient \mathscr{H}_1^0 annihilation at h⁰ resonance.

How to reconcile the relic density without sacrificing Yukawa unification?

$\label{eq:R} \begin{array}{l} R \leq 1.10 \\ R \leq 1.05, \\ R \leq 1.10 \ \& \ \Omega \leq 0.136 \\ R \leq 1.05 \ \& \ \Omega \leq 0.136 \end{array}$

Dark Matter relic density

 $\label{eq:R} \begin{array}{l} {\sf R} \le 1.10 \\ {\sf R} \le 1.05, \\ {\sf R} \le 1.10 \ \& \ \Omega \le 0.136 \\ {\sf R} \le 1.05 \ \& \ \Omega \le 0.136 \end{array}$

 $\Omega_{\mathscr{H}}h^2$ is generally too high. Few compatible solutions due to efficient \mathscr{H}_1^0 annihilation at h⁰ resonance.

How to reconcile the relic density without sacrificing Yukawa unification?

Introduce non-universalities in m₁₆ and m_{1/2}. ✓
Assume [№]/₁ is unstable and decays into an axino + photon. Light axinos are LSPs - Ωh² decreases drastically. ✓

Axion-axino cold-warm dark matter

We propose a dark matter cocktail that consists of:

- Thermal axions prodced via vacuum misallignment (CDM)
- Non-thermal axinos via neutralino1 decays (CDM for axino mass > 1GeV)
- Thermal axinos from early Universe produced via scattering (CDM for axino mass > 100keV)

Checked compliance with

- BBN grivitino mass limits
- Non-thermal leptogenesis

Can be cosmologically consistent!

Baer, Kraml, Haider, SS, Summy, JCAP 0902:002, 2009

SO(10) sparticle spectrum

- Very heavy 1st/2nd gen scalars (>3TeV)
- 3rd gen scalars, heavy gauginos, heavy higgses ~TeV
- Light gauginos ~O(100 GeV)
- Gluino ~300 600 GeV

Example SO(10) benchmarks

parameter	HSb	DR3b	parameter	HSb	DR3b
$m_{16}(1,2)$	10000	11805.6	$m_{ ilde{g}}$	351.2	321.4
$m_{16}(3)$	10000	10840.1	$m_{ ilde{u}_L}$	9972.1	11914.2
m_{10}	12053.5	13903.3	$m_{ ilde{t}_1}$	2756.5	2421.6
M_D	3287.1	1850.6	$m_{ ilde{b}_1}$	3377.1	1359.5
$m_{1/2}$	43.9442	27.414	$m_{\tilde{e}_R}$	10094.7	11968.5
A_0	-19947.3	-22786.2	$m_{\widetilde{W}_1}$	116.4	114.5
aneta	50.398	50.002	$m_{\widetilde{Z}_2}$	113.8	114.2
R	1.025	1.027	$m_{\widetilde{Z}_1}$	49.2	46.5
μ	3132.6	2183.4	m_A	1825.9	668.3
			m_h	127.8	128.6

SO(10) sparticle decays

- Only gluinos and light gauginos can be produced at Tevatron and LHC.
- These mostly decay through 3-body modes, because the 2-body modes are closed due to the very heavy scalars.
- Only exception is neutralino 2s decaying via Zs for some cases.
- Decay structure enables edge studies.

Branching ratios

Gluino

Neutralino 2

Baer, Kraml, SS and Summy, JHEP 0810 (2008) 079 [arXiv:0809.0710] SS, Spiropulu, Zeyrek, CERN CMS AN 2008/018

@LHC

14TeV

Cross sections@14TeV

Signal benchmarks

Point	m_{16}	m_{10}	m_D	$m_{1/2}$	A_0	an eta	$\Omega_{\tilde{\chi}_1^0} h^2$
SO10A	9292.9	10966.1	3504.4	62.5	-19964.5	49.1	220
SO10D	2976.5	3787.9	1020.8	107.0	-6060.3	49.05	0.06

32

Look for multi-lepton + multi b-jet signature. Signal and background production at 14 TeV with ISAJET 7.75 Toy simulation for a generic LHC detector. SM backgrounds: W+jets, Z+jets, tt+jets, WW, ZZ, WZ

Major cuts:

- n(jets) ≥ 4, E_T(j1, j2, j3, j4) ≥ 100,50,50,50 GeV
- transverse sphericity $S_T \ge 0.2$
- Either MET>150 or $n(leptons) \ge 4$.
- For hadronic edge reconstruction, require $n(b \text{ jets}) \ge 2 \text{ or } \ge 4$.

LepCh: Results

- $pp \rightarrow \tilde{g}\tilde{g}$ signal visible in 4jets + 3leptons channel without a MET cut for <1fb⁻¹.
- For ~100fb⁻¹, reconstruction of m(II), m(bb) and m(IIbb) invariant mass edges are possible. These would lead to determination of $m(\tilde{g}), m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_2^0)$ to O(%10) accuracy.
- A complementary signature is the trilepton signal from $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ which can be visible for O(10) fb⁻¹.

- Look for the b-rich mulijets + missing energy signature at CMS.
- Side remark: Besides the SO(10)s, also analyzed two SUSY scenarios scenarios with very heavy scalars and light gauginos:
 - G2-MSSM: A consistent low energy N=1 SUSY realization of M theory compactified on a G2 manifold (Kane et. al.)
 - Focus point mSUGRA (FP): High m₀-low/moderate m_{1/2} consistent with naturalness and WMAP DM constraints (Feng et. al.)
- Signal production at 14 TeV with PYTHIA
- SM backgrounds: QCD, photon+jets (PYTHIA), tt+jets, W+jets, Z+jets (Alpgen)
- Full simulation for the CMS detector using CMSSW.

Six prototype paths based on MET, njets and MET/HT

Step	var	P1	P2	P3	P4	P5	P6
	MET	> 200	> 300	-	> 100	> 100	> 150
2	#jets	≥ 4	≥ 4	≥ 5	≥ 4	≥ 5	≥ 3
3	E_T/H_T	-	-	> 0.1	> 0.1	> 0.1	—

Leptonic background rejection:

 Indirect lepton veto (ILV – Spiropulu 2000) uses combined tracker and calorimeter information to reject events having leptons as their hardest object.

Hadronic (mostly QCD) background rejection:

 Background due to fake missing ET caused by mismeasured jets. Detect events with fake MET.
 PRINCIPLE: Fake MET alligns with mostly mismeasured jet.

Selection results:

	Path	1	2	3	4	5	6
	MET	> 200	> 300	_	> 100	> 100	> 150
	njets	≥ 4	≥ 4	≥ 5	≥ 4	≥ 5	≥ 3
	MET/MHT	_	_	> 0.1	> 0.1	> 0.1 -	
SO10A	nevts	53	9	270	348	171	197
	efficiency	0.78	0.13	3.96	5.10	2.51	2.89
	S/B	4.42	9.00	0.65	1.33	1.88	2.81
	significance	6.57	2.85	10.32	14.1	10.56	12.06
Total BG	nevts	12	1	414	261	91	70
Total BG	nevts	12	1	414	261	91	70

Optimal for SUSY with heavy scalars.

Background estimation: We must be able to estimate backgrounds from the data in order to claim a discovery.

38

Integrated luminosity required for 5σ discovery

Heavy-scalar SUSY scenarios having gluinos with masses up to 1 TeV are accessible at the LHC with over 5 significance for 50-100 fb⁻¹ [corresponding to 3-5 year running with $L = 2 \times 10^{33}$ cm⁻²s⁻¹].

For gluino mass < 700 GeV, 5 discovery with luminosity > 1fb⁻ ¹, providing results within the first year

Baer, Kraml, Lessa, SS and Summy, [arXiv:0910.2988]

@Tevatron

- Look for the b-rich mulijets + missing energy signature.
- Signals with ISAJET, BGs with Alpgen/MadGraph
- Toy detector simulation

╈

Cuts:

cuts	E_T^{miss}	H_T	$E_T(j1)$	$E_T(j2)$	$E_T(j3)$	$E_T(j4)$	
BMPT	$\geq 75~{ m GeV}$	_	15	15	15	15	
CDF	$\geq 90~{\rm GeV}$	280	95	55	55	25	
D0	$\geq 100~{ m GeV}$	400	35	35	35	20	
Earlier study							

$$\begin{array}{c|c} \bullet n_{jets} & 4 \\ \bullet \text{ No isolated leptons} \\ \bullet d\varphi(j1, j2) < 160^{\circ} \\ \bullet n_{b \ jets} & 2 \ or \ 3 \end{array}$$

Hadronic search results

CDF/D0 could search for gluinos with mass beyond the reported \sim 300 GeV for SO(10) SUSY if b jet multiplicity is considered as a cut.

Baer, Kraml, Lessa and SS, [arXiv:0911.4739]

@LHC

7TeV

SO10@early.lhc.cern.ch

- Look for light gluinos in the 1st year of LHC. Two phases:
 - Early phase: No MET and electrons (jets and µs)
 - Later phase: MET and electrons included
- Signals with ISAJET, BGs with Alpgen/MadGraph.
- Toy detector simulation
- Investigate the effect of b tagging.

Cuts: nj > 3; ET(j1) > 100 ST > 0.2

C1:

■ ST > 0.2

MET > 100

nj > 3; ET(j1) > 100

44

SO(10) early LHC results - I

SO(10) early LHC results - II

- Gluino mass reach at early phase up to 400 GeV for 0.2fb⁻¹.
- Including MET increases the reach to ~630 GeV for 1fb⁻¹.
- Lepton cuts leave enough events for preliminary edge studies.
- b tagging is crucial!
- Yukawa-unified SO(10) SUSY can be tested with 1st year data!

Summary

- SO(10) SUSY GUTs offer a well-motivated theoretical framework feature Yukawa unification.
- Neutralino relic density is high, but axion/axino DM solution gives consistent cosmology.
- Characteristic spectrum has multi TeV 1st/2nd gen scalars, ~TeV 3rd gen scalars and sub-TeV gauginos.
- Preferred gluino mass is 350-500 GeV. Gluino pair production dominant at Tevatron and LHC.
- Tevatron reach is m(gluino) < 400 GeV.
- LHC reach for 7 TeV is 400 (630) GeV in year 1.
- LHC at 14 TeV can fully explore these scenarios.

Merci beaucoup