Dark Matter from Lorentz Invariance in 6 dimensions

Giacomo Cacciapaglia IPNL

arXiv:0907.4993 G.C., A.Deandrea, J.Llodra-Perez work in progress with J.Llodra-Perez, B.Kubik, L.Panizzi

6 April 2010 Theorie LHC France / GDR Terascale Tools / FCPPL Hadron Satellite

A "natural" Dark Matter candidate

- Dark Matter is a "necessary" ingredient in the Universe
- The presence of a Dark Matter candidate in models of New Physics is a desirable feature
- However, in most models, it follows from an ad-hoc symmetry: Rparity in supersymmetry, T-parity in little Higgs models, KK-parity in extra dimensions, etc...

KK-parity = reflection wrt centre of interval good symmetry in the bulk, but...

5D case:

A "natural" Dark Matter candidate

- Dark Matter is a "necessary" ingredient in the Universe
- The presence of a Dark Matter candidate in models of New Physics is a desirable feature
- However, in most models, it follows from an ad-hoc symmetry: Rparity in supersymmetry, T-parity in little Higgs models, KK-parity in extra dimensions, etc...

KK-parity = reflection wrt centre of interval good symmetry in the bulk, but...

5D case:

it requires identification of endpoints!

A "natural" Dark Matter candidate

Extra dimensions are a versatile tool:

- Many interesting models: Gauge-Higgs unification, Higgsless models, GUTs, composite Higgs, technicolour, QCD...
- Interesting models do not have a KK parity (i.e. incompatible with localisation, warping...): not generic and not "natural"!
- We found a unique "natural" scenario in 6 dimensions.
- I will briefly discuss the LHC phenomenology of such scenario.

The real projective plane

$$\mathbf{pgg} = \langle r, g | r^2 = (g^2 r)^2 = \mathbf{1} \rangle$$

$$r: \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases} \qquad g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

Translations defined as:

$$t_5 = g^2$$

$$t_6 = (gr)^2$$

The real projective plane

$$\mathbf{pgg} = \langle r, g | r^2 = (g^2 r)^2 = \mathbf{1} \rangle$$

$$r: \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases} \qquad g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

Two singular points: $(0,\pi)\sim(\pi,0)$ $(0,0)\sim(\pi,\pi)$

The real projective plane

$$\mathbf{pgg} = \langle r, g | r^2 = (g^2 r)^2 = \mathbf{1} \rangle$$

$$r: \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases} \qquad g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

KK parity is an exact symmetry of the space!

$$p_{KK}: \begin{cases} x_5 \sim x_5 + \pi \\ x_6 \sim x_6 + \pi \end{cases}$$

Action for a massless scalar:

$$S = \int_0^{2\pi} dx_5 dx_6 \,\partial_\mu \phi^\dagger \partial^\mu \phi - \partial_5 \phi^\dagger \partial_5 \phi - \partial_6 \phi^\dagger \partial_6 \phi$$

The equation of motion

$$p^2 + \partial_5^2 + \partial_6^2]\phi(p, x_5, x_6) = 0$$

s solved by
$$\phi(p, x_5, x_6) = \sum_{k,l} f_{(k,l)}(x_5, x_6) \frac{\phi_{(k,l)}(p)}{\phi_{(k,l)}(p)}$$

with:

 $f_{(k,l)}(x_5, x_6) = \begin{cases} \cos(kx_5) \cos(lx_6) \\ \cos(kx_5) \sin(lx_6) \\ \sin(kx_5) \cos(lx_6) \\ \sin(kx_5) \sin(lx_6) \end{cases} \Rightarrow p^2 = k^2 + l^2$

The parity of the field selects the solutions!

$$f_{(k,l)}(x_5, x_6) = \left\{ \right.$$

 $\begin{array}{c} \cos(kx_5) \cos(lx_6) \\ \cos(kx_5) \sin(lx_6) \\ \sin(kx_5) \cos(lx_6) \\ \sin(kx_5) \sin(lx_6) \end{array}$

Rot.	Glide	КК
+		
-		
-		
+		

Rotation: $\begin{cases} x_5 \to -x_5 \\ x_6 \to -x_6 \end{cases}$

The parity of the field selects the solutions!

$$f_{(k,l)}(x_5, x_6) = \left\{ \right.$$

 $\begin{array}{l} \cos(kx_5) \cos(lx_6) \\ \cos(kx_5) \sin(lx_6) \\ \sin(kx_5) \cos(lx_6) \\ \sin(kx_5) \sin(lx_6) \end{array}$

 π

Rot.	Glide	KK
+	Pk,I	
-	-pk,l	
-	Pk,I	
+	-pk,i	

$$p_{k,l} = (-1)^{k+l}$$

Rotation:
$$\begin{cases} x_5 \to -x_5 \\ x_6 \to -x_6 \end{cases}$$
Glide:
$$\begin{cases} x_5 \to x_5 + \pi \\ x_6 \to -x_6 + \end{cases}$$

The parity of the field selects the solutions!

$$f_{(k,l)}(x_5, x_6) = \langle$$

 $\begin{array}{l} \cos(kx_5) \cos(lx_6) \\ \cos(kx_5) \sin(lx_6) \\ \sin(kx_5) \cos(lx_6) \\ \sin(kx_5) \sin(lx_6) \end{array}$

Rot.	Glide	КК
+	Pk,I	Pk,I
-	-pk,l	Pk,I
-	Pk,I	Pk,I
+	–pk,i	Pk,I

$$p_{k,l} = (-1)^{k+l}$$

Rotation:
$$\begin{cases} x_5 \to -x_5 \\ x_6 \to -x_6 \end{cases}$$

KK parity:
$$\begin{cases} x_5 \to x_5 + \pi \\ x_6 \to -x_6 + \pi \end{cases}$$

Glide:
$$\begin{cases} x_5 \to x_5 + \pi \\ x_6 \to -x_6 + \pi \end{cases}$$

Toy model for phenomenology: the SM on the real projective plane Sor simplicity, from now on I'll set: $R_5 = R_6 = R = 1$ All masses in unit of: $m_{KK} = \frac{1}{R}$

Spectrum of KK levels

+

+

+

$p_{KK} = (-1)^{k+l}$	(0,0) m = 0	(1,0) & (0,1) m = 1	(1,1) m = 1.41	(2,0) & (0,2) m = 2	(2,1) & (1,2) m = 2.24
Gauge bosons G, A, Z, W	\checkmark		\checkmark	\checkmark	\checkmark
Gauge scalars G, A, Z, W		\checkmark	\checkmark		\checkmark
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	√ (x2)	\checkmark	√ (x2)

Spectrum of KK levels

Small splittings inside the KK tier are generated by loop corrections, the Higgs VEV and localised operators (counterterms)

Level (1,0) and (0,1)

 $\overline{m} = \overline{m}_{KK} + \delta \overline{m}$

Spectrum of KK levels

Small splittings inside the KK tier are generated by loop corrections, the Higgs VEV and localised operators (counterterms)

Level (1,0) and (0,1)

 $m = m_{KK} + \delta m$

Relic abundance

200 < mKK < 400 GeV

5D: 600-1200 GeV, 6D: 200 GeV

Phenomenology: interactions

Bulk interactions: conservation of XD momentum!

Only pair production off SM states is allowed!

- Same as SM couplings (up to normalization factors)!
- Large production cross sections!

Phenomenology: interactions

Loop interactions: suppressed, but less constrained.

Single production and decays

(0,0)

Localized interactions: even less constrained, only preserve KK parity
 (0,0)

(1,1)

Phenomenology at the LHC: tiers (1,0) and (0,1)

Small splittings make detection of lightest tier challenging:

	100	-					-
	80	- \ - \ - \ - \ - \ \		tops			- - -
eVI	60		WZ.		σh		
δm [G	40	- ``				qu	arks -
	20	-					
	0	-			leptons		<u> </u>
	0	0	100	200	300	400	500
				mKK [[GeV]		

	$m_X - m_{LLP}$	decay mode	final state
	in GeV		+ MET
$t^{(1,0)}$	70	$bW^{(1,0)}$	bjj bl u
$G^{(1,0)}$	40-70	$qq^{(1,0)}$	jj
$q^{(1,0)}$	20-40	$q A^{(1,0)}$	j
$W^{(1,0)}$	20	$l u^{(1,0)}, u l^{(1,0)}$	$l\nu$
$Z^{(1,0)}$	20	$ll^{(1,0)}$	11
$l^{(1,0)}$	< 5	$lA^{(1,0)}$	l
$A^{(1,0)}$	0	-	

Phenomenology at the LHC: tiers (2,0) and (0,2)

- Decay in pair of SM particles (via vertices at 1-loop)
- Small splittings: suppressed or forbidden decays in pair of (1,0)

exceptions: $W_{(2,0)}, Z_{(2,0)} \rightarrow l_{(1,0)} l_{(1,0)}$ $top_{(2,0)} \rightarrow W_{(1,0)} b_{(1,0)}$ $g_{(2,0)} \rightarrow q_{(1,0)} q_{(1,0)}$

...

	100		200	400	600	800	
	100						
8		- \	\mathbf{A}				-
	00	-					-
	00	_ \ \					-
		- \\	to	ps	glu	ion	-
8	60	_ \\		_			
		- \\					_
Ŭ		- \\W	,∠				-
δm	40	- \\				qu	arks -
			\mathbf{X}				_
	20	-					_
	20	-					
		-			leptons		-
	0				Teptons		A
		0	100	200	200	100	
		0	100	200	300	400	500
				mKK	[GeV]		

	$m_X - m_{LLP}$	decay mode	final state
	in GeV		+ MET
$t^{(1,0)}$	70	$bW^{(1,0)}$	bjj blv
$G^{(1,0)}$	40-70	$qq^{(1,0)}$	jj
$q^{(1,0)}$	20-40	$qA^{(1,0)}$	j
$W^{(1,0)}$	20	$l u^{(1,0)}, u l^{(1,0)}$	$l\nu$
$Z^{(1,0)}$	20	$ll^{(1,0)}$	11
$l^{(1,0)}$	< 5	$lA^{(1,0)}$	l
$A^{(1,0)}$	0	-	

Phenomenology at the LHC: (2,0)-(0,2) degenerate case

- loop induced mixing cannot be neglected: one heavier state, and a lighter (cut-off independent) one
- More (1,0)-(1,0) channels are open

Phenomenology at the LHC: tier (1,1) - 4 tops signal

In collab. with Lyon CMS group

Large corrections for vectors, small (finite) for scalars.

0

- vector gluon largely produced (few to 60 pb!) and chain decay to vector photon.
- vector photon may decay to pair of tops: 4 tops + 4 soft jets!

Phenomenology at the LHC

- Small splittings make detection of lightest tier challenging: need boost to see!
- Tiers (1,1) and (2,0) decay to SM particles: nice resonances, but no MET! Interesting degenerate case.
- Tier (2,1) decays in (1,0) + (0,0): SM + MET!

Conclusions and outlook

- KK parity can be a "natural" (not ad-hoc) symmetry relic of Lorentz invariance
- Interesting models can be implemented: Gauge-Higgs unification, fermion masses, etc.
- We studied the <u>UNIQUE</u> 6D geometry where this happens
- New Phenomenology from other models in the literature: light resonances, small splittings...
- We implemented the model in FeynRules: easy interface with calcHep, Madgraph, FeynArt...
- Rich phenomenology: challenging MET signals, 4 tops, resonances...

Bonus track

Intro to XD: a scalar field

Action for a massless scalar:

$$S = \int_0^{2\pi} dx_5 \,\partial_\mu \phi^\dagger \partial^\mu \phi - \partial_5 \phi^\dagger \partial_5 \phi$$

$$[p^2 + \partial_5^2] \phi(p, x_5) = 0$$

is solved by

$$\phi(p, x_5) = \sum_k f_{(k)}(x_5) \frac{\phi_{(k)}(p)}{4D \text{ field}}$$

with:

$$f_{(k)} = \begin{cases} \cos(kx_5) \\ \sin(kx_5) \end{cases} \implies p^2 = k^2$$

Note that under x5 -> -x5, cos -> + cos while sin -> -sin! Also, k=0 only allowed for cos!

Gauge bosons

$$S_{\text{gauge}} = \int_{0}^{2\pi} dx_5 \, dx_6 \, \left\{ -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} - \xi (\partial_5 A_5 + \partial_6 A_6) \right)^2 \right\}$$

gauge fixing term

After solving the Equations of Motion, and imposing orbifold parities $[\mu \rightarrow (++), 5 \rightarrow (-+), 6 \rightarrow (--)]$ the spectrum is:

 $p_{KK} = (-1)^{k+l} \qquad m_{(k,l)} = \sqrt{k^2 + l^2}$

(k,l)	p_{KK}	$A^{(++)}_{\mu}$	$A_{5}^{(-+)}$	$A_6^{()}$
(0, 0)	+	$\frac{1}{2\pi}$		
(0, 2l)	+	$\frac{1}{\sqrt{2\pi}}\cos 2lx_6$		
(0, 2l - 1)	—		$\frac{1}{\sqrt{2}\pi}\sin(2l-1)x_{6}$	
(2k, 0)	+	$rac{1}{\sqrt{2\pi}}\cos 2kx_5$		
(2k-1,0)	_			$rac{1}{\sqrt{2}\pi}\sin(2k-1)x_5$
$(k,l)_{ m k+l \ even}$	+	$rac{1}{\pi}\cos kx_5\cos lx_6$	$rac{l}{\pi\sqrt{k^2+l^2}}\sin kx_5\cos lx_6$	$-rac{k}{\pi\sqrt{k^2+l^2}}\cos kx_5\sin lx_6$
$(k,l)_{ m k+l \ odd}$	—	$rac{1}{\pi}\sin kx_5\sin lx_6$	$rac{l}{\pi\sqrt{k^2+l^2}}\cos kx_5\sin lx_6$	$-rac{k}{\pi\sqrt{k^2+l^2}}\sin kx_5\cos lx_6$

Splittings I: loops

Generic loop contributions can be written as:

 $\Pi = \Pi_T + p_g \Pi_G + p_r \Pi_R + p_g p_r \Pi_{G'}$

• For gauge scalars, tier (1,0):

Log divergence!

$$\delta m_B^2 = \frac{{g'}^2}{64\pi^4 R^2} \left[-79T_6 + 14\zeta(3) + \pi^2 n^2 L + \dots \right],$$

$$\delta m_W^2 = \frac{g^2}{64\pi^4 R^2} \left[-39T_6 + 70\zeta(3) + 17\pi^2 n^2 L + \dots \right],$$

$$\delta m_G^2 = \frac{g_s^2}{64\pi^4 R^2} \left[-36T_6 + 84\zeta(3) + 24\pi^2 n^2 L + \dots \right].$$

- Divergence localized on singular points and proportional to the tier mass!
- Proportional to the KK mass scale!

Splittings I: loops

Generic loop contributions can be written as:

- Divergence localized on singular points and proportional to the tier mass!
- Proportional to the KK mass scale!

Splittings II: Higgs VEV

- The Higgs VEV does not mix tiers (v is constant!)
- At level (0,0), we obtain the Standard Model!
- For massive tiers:

$$m_{(k,l)}^2 = (k^2 + l^2)m_{KK}^2 + m_0^2$$

Mixing angle in the neutral gauge boson sector (A-Z): smaller than the Weinberg mixing angle!

$$W_n^3 \quad B_n \) \cdot \left(\begin{array}{cc} \delta m_W^2 + m_W^2 & -\tan\theta_W m_W^2 \\ -\tan\theta_W m_W^2 & \delta m_B^2 + \tan^2\theta_W m_W^2 \end{array} \right) \cdot \left(\begin{array}{c} W_n^3 \\ B_n \end{array} \right) \,.$$

Splittings II: Higgs VEV

- The Higgs VEV does
- At level (0,0), we ob
- For massive tiers:

$$m_{(k,l)}^2 = (k^2 + l^2)m_{KK}^2 + m_0^2$$

Mixing angle in the neutral gauge boson sector (A-Z): smaller than the Weinberg mixing angle!

 $\int_0^{2\pi} dx_5 dx_6 |\mathcal{D}H|^2 \Rightarrow \int_0^{2\pi} dx_5 dx_6 m_W^2 W^2$

 $\Rightarrow \sum_{k,l} m_W^2 W_{k,l}^2$

$$W_n^3 \quad B_n \) \cdot \left(\begin{array}{cc} \delta m_W^2 + m_W^2 & -\tan\theta_W m_W^2 \\ -\tan\theta_W m_W^2 & \delta m_B^2 + \tan^2\theta_W m_W^2 \end{array} \right) \cdot \left(\begin{array}{c} W_n^3 \\ B_n \end{array} \right) \,.$$

Splittings III: localized operators

Can add kinetic terms on the two singular points:

Note: remove degeneracy between (k,l) and (l,k)!

Small and arbitrary corrections: neglect for now!

Phenomenology at the LHC

Production rates are large:

Thanks to Bogna Kubik–Deriaz

We start from, say, 1 compact XD...

- We start from, say, 1 compact
 XD...
- We orbifold to obtain chiral fermions...

X5 -> - **X**5

 $\Psi = \left(\begin{array}{c} \chi \\ \bar{\eta} \end{array}\right)$

chiral components

$$S = \int dx_5 \ i\bar{\chi}\bar{\sigma}^{\mu}\partial_{\mu}\chi + i\eta\sigma^{\mu}\partial_{\mu}\bar{\eta} - \eta\partial_5\chi + \bar{\chi}\partial_5\bar{\eta}$$

different parities for chiral components only under a symmetry that changes sign to all extra coordinate(s)

- We start from, say, 1 compact XD...
- We orbifold to obtain chiral fermions...
- We impose a discrete parity: Kaluza-Klein parity!

- We start from, say, 1 compact
 XD...
- We orbifold to obtain chiral fermions...
- We impose a discrete parity: Kaluza-Klein parity!

The KK parity is added ad hoc, it requires to identify two DIFFERENT fixed points!

Orbifold without fixed points:

In 2D there are 17 orbifolds (discrete symmetries of the plane)...

of which 3 do not have fixed points/lines:

Orbifold without fixed points:

In 2D there are 17 orbifolds (discrete symmetries of the plane)...

of which 3 do not have fixed points/lines:

3: Real projective plane...

Orbifold without fixed points:

3: Real projective plane...

``5D" limit

$p_{KK} = (-1)^{k+l}$	(0,0) m = 0	(1,0) & (0,1) m = 1	() () m = 1.41	(2,0) & (0,2) m = 2	(2.1) & (1.2) m = 2.24
Gauge bosons G, A, Z, W	\checkmark		\checkmark	\checkmark	\checkmark
Gauge scalars G, A, Z, W		\checkmark	\checkmark		\checkmark
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	√ (x2)	\checkmark	√ (x2)