PSEUDOSCALAR MESON FORM FACTORS IN RELATIVISTIC QUANTUM MECHANICS: CONSTRAINTS

FROM COVARIANT SPACE-TIME TRANSLATIONS

Bertrand DESPLANQUES (LPSC, Grenoble) and Yubing DONG (IHEP, Beijing)

MOTIVATIONS

Form factors of hadronic systems: an important source of information on the quark dynamics, especially at high momentum transfers \rightarrow short-range dynamics

High momentum transfers: supposes a relativistic treatment

- In relativistic quantum mechanics (RQM) approaches, however:
- \rightarrow strong sensitivity to the chosen implementation of relativity, in the assumption of a one-body current (choice of the hypersurface)

Present work:

Look at the role of constraints related to space-time translations, in the case of the pseudoscalar-meson form factors

CONSTRAINTS FROM POINCARÉ COVARIANT SPACE-TIME TRANSLATIONS

A symmetry whose role is often ignored (beyond 4-momentum conservation)

 \rightarrow implies relations such as:

$$e^{iP \cdot a} J^{\nu}(x) (S(x)) e^{-iP \cdot a} = J^{\nu}(x+a) (S(x+a)),$$

and in particular:

$$J^{\nu}(x) \ (S(x)) = e^{iP \cdot x} \ J^{\nu}(0) \ (S(0)) \ e^{-iP \cdot x}$$

 \rightarrow matrix element between eigenstates of P^{μ}

$$\langle i | J^{\nu}(x) (\text{or } S(x)) | f \rangle = e^{i(P_i - P_f) \cdot x} \langle i | J^{\nu}(0) (\text{or } (S(0)) | f \rangle.$$

 \rightarrow 4-momentum conservation when combined with an external field $\propto e^{iq\cdot x}$ and assuming space-time translation invariance or integrating over x

$$(P_f - P_i)^\mu = q^\mu$$

FURTHER RELATIONS

Getting previous relations supposes many-body currents in RQM approaches

 \rightarrow can be checked by considering further relations (Lev):

$$[P^{\mu} \;,\; J^{\nu}(x)] = -i \partial^{\mu} \, J^{\nu}(x), \quad [P^{\mu} \;,\; S(x)] = -i \partial^{\mu} \, S(x),$$

and especially

$$[P_{\mu}, [P^{\mu}, J^{\nu}(x)]] = -\partial_{\mu} \partial^{\mu} J^{\nu}(x), \quad [P_{\mu}, [P^{\mu}, S(x)]] = -\partial_{\mu} \partial^{\mu} S(x).$$

 \rightarrow between eigenstates of P^{μ}

$$< |q^2 J^{\nu}(0) (\text{or } S(0))| > = < |(p_i - p_f)^2 J^{\nu}(0) (\text{or } S(0))| >$$

 \rightarrow quite generally, in RQM approaches with the simplest single-particle current:

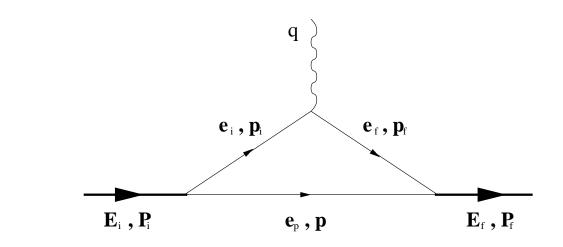
$$q^2 \neq (p_i - p_f)^2 \,.$$

 \rightarrow the squared momentum transferred to the constituents differs from the one transferred to the whole system: close relationship to discrepancies

IMPLEMENTING CONSTRAINTS FROM POINCARÉ SPACE-TIME TRANSLATION INVARIANCE

Observation:

the coefficient of Q, in expressions of form factors, involves a factor $\simeq \frac{2e_k}{M}$ that deviates from 1 by interaction effects which are here or there depending on the approach



Proposed:

- modify the coefficient of Q by a factor α so that to fulfill: " $(p_i p_f)^2$ " = q^2 ,
- was done numerically first, can now be done analytically in most cases
- \rightarrow amounts to account for many-body currents at all orders in the interaction

FURTHER DETAILS

Typical equation to be solved:

$$q^{2} = "[(P_{i} - P_{f})^{2} + 2(\Delta_{i} - \Delta_{f}) (P_{i} - P_{f}) \cdot \xi + (\Delta_{i} - \Delta_{f})^{2} \xi^{2}]" = \alpha^{2}q^{2} - 2\alpha''(\Delta_{i} - \Delta_{f})" q \cdot \xi + "(\Delta_{i} - \Delta_{f})^{2}" \xi^{2},$$

where Δ is proportional to an interaction effect.

To be noticed

→ No modification required for the standard front form $(q^+ = 0)$, where the above equality is trivially fulfilled with $\alpha^2 = 1$ (using $q \cdot \xi = q \cdot \omega = 0, \xi^2 = \omega^2 = 0$)

 \rightarrow one tractable solution has been found but there may be less tractable other ones

RESULTS INCORPORATING EFFECTS MOTIVATED BY SPACE-TIME TRANSLATION INVARIANCE

Sample of results:

Pion charge form factor for the following approaches:

- the front form with $q^+ = 0$ ("perpendicular" momentum configuration; F.F. (perp.))
- the instant form (I.F.) in the Breit frame
- the instant and front forms in a "parallel" momentum configuration (I.F.+F.F.(parallel))
- the "point-form" (Bakamjian, Sokolov; "P.F.")

(the point-form (Dirac inspired; D.P.F.) is omitted here)

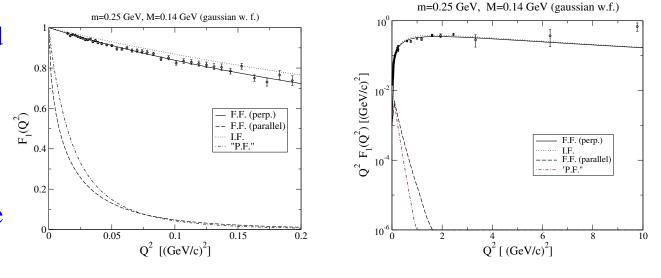
For illustration:

Gaussian wave function with a parameter obtained from the strength of the confinement force (Basdevant and Boukraa), and the quark mass fitted to reproduce the pion decay constant, f_{π}

NUMERICAL RESULTS FOR THE PION CHARGE FORM FACTOR

Uncorrected results

- Standard front and instant forms do well
- Role of M
- Lorentz invariance does not ensure good results



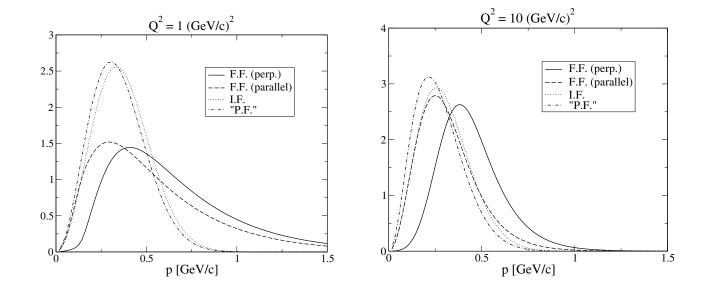
Corrected results

- all results can be made identical to the standard front-form one
- the effects due to a small value of M have disappeared
- some discrepancy with measurements
 - \rightarrow more complete mass operator (gluon exchange) and OGEC

EQUIVALENCE OF DIFFERENT APPROACHES: A NON-TRIVIAL CHANGE OF VARIABLES

 \rightarrow compare integrands in terms of the spectator-quark momentum p,

at 2 values of the momentum transfer Q^2 (case of the pion charge form factor).



A FEW OBSERVATIONS

- Similar results for the scalar pion form factor as well as the kaon meson form factors (smaller effects)
- Disappearance of some paradoxes $(r_{ch.} \rightarrow \infty \text{ with } M \rightarrow 0)$
- Support for the standard front-form results (unchanged)
- Dispersion-relation approach (Anisovich *et al.*, Krutov and Troitsky): convergence point for RQM ones
- Some space for extra many-body currents (required for the asymptotic pion charge form factor)
- Generalizations to non-zero spin systems, time-like momentum transfers, ···

CONCLUSION AND OUTLOOK

Large discrepancies between predicted form factors in different RQM approaches

- could be due to the underlying physics?

- or an incomplete implementation of relativity?

→ present results ascribe them to missing properties from Poincaré covariant space-time translations

 \rightarrow allow one to concentrate on the physics

For a more complete comparison with measurements:

- accounting for the one-gluon exchange contribution to the mass operator (possible problem with non-perturbative effects: Cardarelli *et al.*, B.D.)
- accounting for the one-gluon exchange current ensuring the right asymptotics of the pion charge form factor