中国科学院高能物理研究所

Cross section lineshape of $e^+e^- \to D\bar{D}$ and $e^+e^- \to D\bar{D}^* + c.c.$

Yuan-Jiang Zhang

IHEP, CAS

In collaboration with Qiang Zhao

Outline

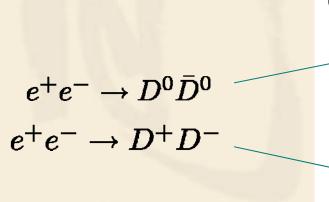
⇒ Part I: The lineshape of e+e-→DD

⇒ Part II: The lineshape of e+e-→DD* + c.c.

⇒ Summary

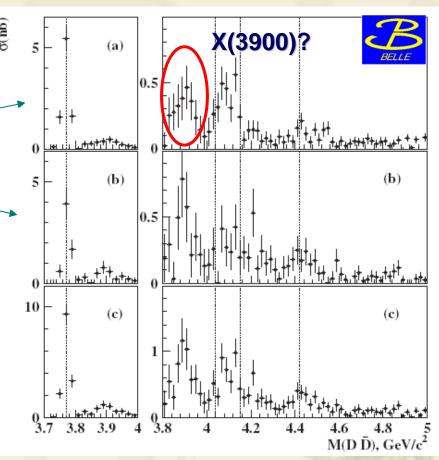
Motivation

- → Lineshape anomaly in DD production.
- → Charmed mesons pair production in e⁺e⁻ annihilation as a probe for NPQCD mechanisms

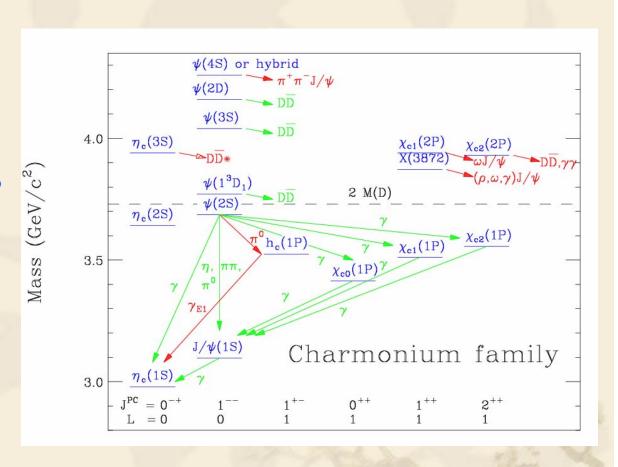

Part I

The cross section lineshape of e⁺e⁻→DD

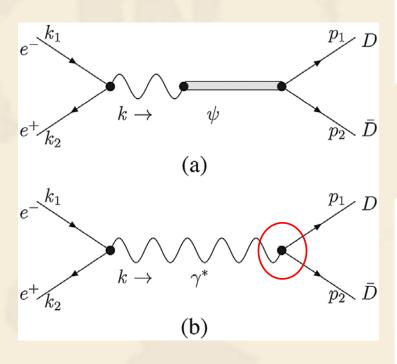
Y.-J. Zhang and Q. Zhao, PRD81, 034011 (2010)



Experimental results


Belle, G. Pakhlova et al, 2006, PRD77, 011103(R)

The vertical lines are for $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ positions


Further more

- Potential model describes charmonium spectrum well above open-charm threshold?
- Signal for exotic?
- How about the openchannel effect?

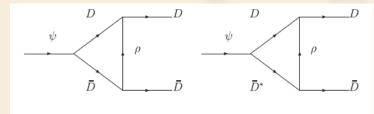
Vector meson dominance model

$$T_{a} = e^{2}\bar{v}(k_{2})\gamma_{\mu}u(k_{1})\frac{1}{s}\frac{m_{\psi}^{2}}{f_{\psi}}\frac{1}{s - m_{\psi}^{2} + im_{\psi}\Gamma_{\psi}} \times g_{\psi D\bar{D}}(p_{1} - p_{2})^{\mu},$$

$$T_b = e^2 \bar{v}(k_2) \gamma_{\mu} u(k_1) \frac{1}{s} g_c(s) (p_1 - p_2)^{\mu},$$

$$\sigma(e^{+}e^{-} \to D\bar{D})$$

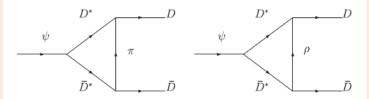
$$= \frac{8\pi\alpha_{e}^{2}}{3} \frac{|\vec{p}|^{3}}{s^{5/2}} \left| g_{c}(s) + \frac{m_{\psi'}^{2}}{f_{\psi'}} \frac{g_{\psi'D\bar{D}}}{s - m_{\psi'}^{2} + im_{\psi'}\Gamma_{\psi'}} \right.$$

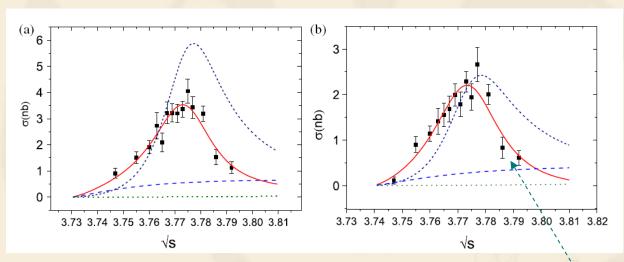

$$+ \sum_{\psi_{i}} \frac{m_{\psi_{i}}^{2}}{f_{\psi_{i}}} \frac{g_{\psi_{i}D\bar{D}}}{s - m_{\psi_{i}}^{2} + im_{\psi_{i}}\Gamma_{\psi_{i}}} e^{i\phi_{i}} \left|^{2}, \right.$$

Intermediate meson loops contribution

→ Calculation in hadron degrees of freedom

$$i\langle BC|T|A\rangle = \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \langle BC|\mathcal{H}^n|A\rangle$$
$$= -i\langle BC|\mathcal{H}_{A;BC}|A\rangle - \frac{1}{2} \sum_{k} \langle BC|\mathcal{H}_{k;BC}|k\rangle \langle k|\mathcal{H}_{A;k}|A\rangle$$
$$+ \cdots ,$$




FIG. 2. Feynman diagrams for intermediate meson loops as corrections for the $D\bar{D}$ coupling to a charmonium state.

$$\begin{split} T_L &= -ie^2 \bar{v}(k_2) \gamma_{\mu} u(k_1) \frac{1}{s} \frac{m_{\psi}^2}{f_{\psi}} \frac{1}{s - m_{\psi}^2 + im_{\psi} \Gamma_{\psi}} \\ &\times \int \frac{d^4 p_2}{(2\pi)^4} \sum_{\text{polarization}} \frac{T_1 T_2 T_3}{a_1 a_2 a_3} \mathcal{F}(p_2^2). \end{split}$$

$$\mathcal{F}(p^2) = \left(\frac{\Lambda^2 - m_{\text{ex}}^2}{\Lambda^2 - p^2}\right)^n, \qquad n = 1, 2$$

For compensate the off-shell effects and kill the divergence

Fitted results:

	$e^+e^- \rightarrow D^0\bar{D}^0$	$e^+e^- \rightarrow D^+D^-$
$g_{\psi'D\bar{D}}$	9.05 ± 2.34	7.72 ± 1.02
$g_{\psi(3770)D\bar{D}}$	13.58 ± 1.07	10.71 ± 1.75
	3774.0 ± 1.3	3774.0 ± 1.6
$m_{\psi(3770)} \text{ (MeV)} $ $\Gamma_{\psi(3770)} \text{ (MeV)}$	28.4 ± 2.9	29.6 ± 2.9
ϕ	228.1° ± 18.6°	$190.6^{\circ} \pm 21.1^{\circ}$
χ^2 /d.o.f.	12.28/9	13.32/9

The date are from BES.

M. Ablikim et al, PLB 668, 263 (2008)

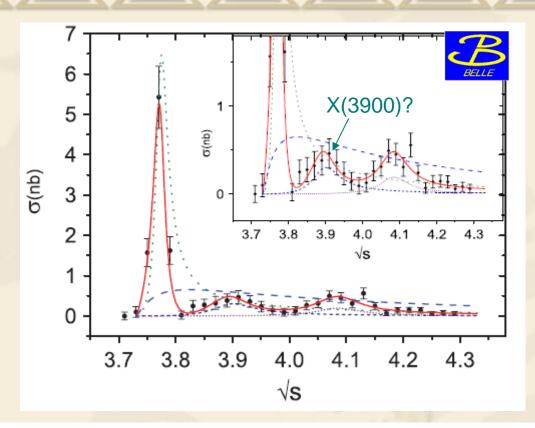


TABLE II. Fitting parameters from fit II. The results are obtained by fitting the Belle data [11] for $e^+e^- \to D^0\bar{D}^0$. We separately list the other two fitted quantities here: $g_{\psi'D^0\bar{D}^0} = 9.05 \pm 0.37$, $g_{\psi(3770)D^0\bar{D}^0} = 13.13 \pm 0.65$. The reduced χ^2 is $\chi^2/\text{d.o.f.} = 17.45/19$.

	M (GeV)	Γ (MeV)	$g_{VDD}/f_{V}(\times 10^{-2})$	ϕ
X(3900)	3.894 ± 0.011	89.8 ± 12.6	6.76 ± 0.89	$104.36^{\circ} \pm 7.90^{\circ}$
$\psi(3770)$	3.7724 ± 0.002	25.4 ± 1.4	23.2 ± 1.1	198.85° ± 4.19°
$\psi(4040)$	4.0812 ± 0.008	96.2 ± 11.4	3.48 ± 0.34	101.16° ± 11.742°

The open-channel effects

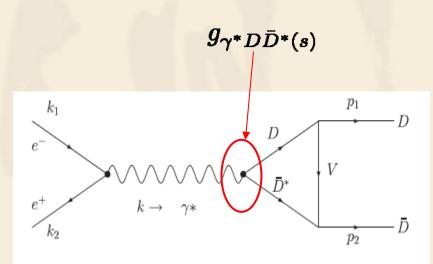
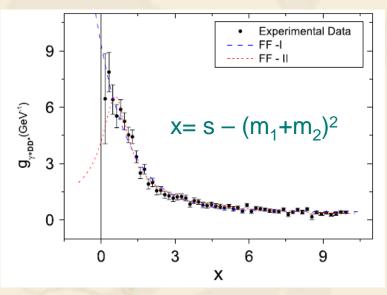
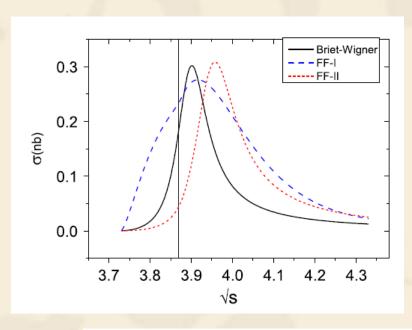



FIG. 3. Feynman diagram for the $D\bar{D}^* + \text{c.c.}$ open channel effects.


The date are from Belle.

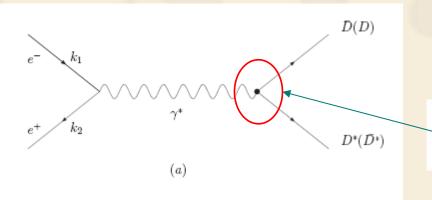
Fit-I:
$$g_{\gamma^*D\bar{D}^*}(s) = g_1 \exp[-(s - (m_D + m_{D^*})^2)/t_1] + g_0$$

Fit-II:
$$g_{\gamma^*D\bar{D}^*}(s) = \left| \frac{b_0}{s - m_X^2 + i m_X \Gamma_X} + b_1 \right|,$$

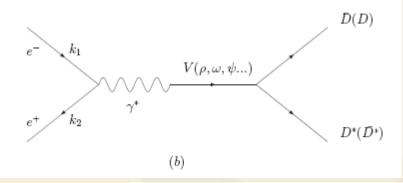
The open-channel effects

- The solid line, dashed line and dotted line are the exclusive contribution from the different approach.
- The open-channel effect cause the enhancement near the 3.9GeV.
- → How about the open channel effects in other process?

FF-I		FF-II		
$g_{\gamma^*D\bar{D}^*} = g_1 \exp[-(s -$	$(m_D + m_{D^*})^2 / t_1] + g_0$	$g_{\gamma^*D\bar{D}^*} = \frac{1}{s^*}$	$\frac{b_0}{-m_X^2+im_X\Gamma_X}+b_1$	
<i>g</i> ₁	8.86 ± 0.59	b_0	3.08 ± 0.31	
t_1	1.28 ± 0.06	m_X (GeV)	3.943 ± 0.014	
g_0	0.43 ± 0.02	Γ_X (MeV)	119.0 ± 10.0	
		b_1	0.016 ± 0.045	
χ^2 /d.o.f.	68.86/53	$\chi^2/\text{d.o.f.}$	47.67/52	


Part II

The cross section lineshape of $e^+e^- \rightarrow D\bar{D}^* + c.c.$


Y.-J. Zhang and Q. Zhao, arXiv:1002.1612 [hep-ph]

Vector meson dominance model

$$g_{\gamma^* D^* \bar{D}}(s) = \sum_{V} \frac{M_V^2}{f_V} \frac{1}{s - M_V^2 + i \sqrt{s} \; \Gamma_V} g_{V D^* \bar{D}},$$

$$\frac{e}{f_V} = \left[\frac{3\Gamma_{V \to e^+ e^-}}{2\alpha_e |\vec{p_e}|} \right]^{\frac{1}{2}}$$

$$\sigma(e^+e^- \to D^{*+}D^- + c.c.) = \frac{8\pi}{3} \frac{|\vec{p}|^3}{s^{3/2}} \alpha_e^2 \left| \sum_V \frac{M_V^2}{f_V} \frac{g_{VD^*\bar{D}}}{s - M_V^2 + i\sqrt{s}} \frac{\Gamma_V}{\Gamma_V} \right|^2.$$

Asymptotic behavior of the form factor

 $g_{\gamma^*D^*ar{D}}(s)\sim s^{-2}$ To avoid the violation of unitary, we have:

$$\sum_{\rho_i} \frac{M_{\rho_i}^2}{f_{\rho_i}} g_{\rho_i D^* \bar{D}} = 0 ,$$

$$\sum_{\rho_i} \frac{M_{\rho_i}^2}{f_{\rho_i}} g_{\rho_i D^* D} = 0 \; , \qquad \text{and} \qquad \sum_{V(I=0)} \frac{M_{V(I=0)}^2}{f_{V(I=0)}} g_{V(I=0)D^* D} = 0 \; .$$

Quark model and flavor symmetry leads:

$$f_{\omega_i} \simeq 3 f_{\rho_i}, \quad m_{\rho_i}^2 \simeq m_{\omega_i}^2 \;, \qquad \text{and} \qquad g_{\omega_i D^* + D^-} = -g_{\rho_i D^* + D^-}.$$

$$g_{\omega_i D^{*+}D^{-}} = -g_{\rho_i D^{*+}D^{-}}$$

T. M. Aliev, E. Iltan, N. K. Pak and M. P. Rekalo, Z. Phys. C 64, 683 (1994).

The contributions come from the light vector mesons are very small!

Coupling of charmonia to charmed mesons

Effective Lagrangians:

$$\mathcal{L}_{VD\bar{D}} = g_{VD\bar{D}} \{ D\partial_{\mu}\bar{D} - \partial_{\mu}D\bar{D} \} V^{\mu},$$

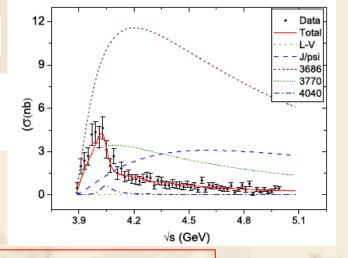
$$\mathcal{L}_{VD^{*}\bar{D}} = -ig_{VD^{*}\bar{D}} \varepsilon_{\alpha\beta\mu\nu} \partial^{\alpha}V^{\beta}\partial^{\mu}D^{*\nu}\bar{D} + h.c.$$

- → Some couplings are not available.
- $g_{VD^*\bar{D}} = g_{VD\bar{D}} \times g_V,$
- → Relativistic potential model and the electromagnetic current give :

$$g_V = \frac{e_Q}{\Lambda_Q} + \frac{e_q}{\Lambda_q},$$

→ Their coupling values generally have large discrepancies in different models.

P.Colangelo, F. De Fazio and G. Nardulli, Phys. Lett. B 334, 175 (1994) R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio and G. Nardulli, Phys. Rept. 281, 145 (1997)

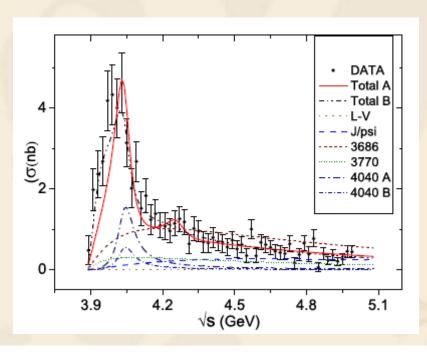

For charmonium coupling to the charmed mesons, we assume:

$$g_{\psi} \equiv g_{J/\psi} \simeq g_{\psi'} \simeq g_{\psi(3770)} \simeq g_{\psi(4040)}$$
,

then

$$\frac{\Gamma(\psi(4040)\to D\bar{D})}{\Gamma(\psi(4040)\to D^*\bar{D}+c.c.)} = \frac{|\vec{p_1}|^3}{g_\psi^2 M_{\psi(4040)}^2 |\vec{p_2}|^3},$$

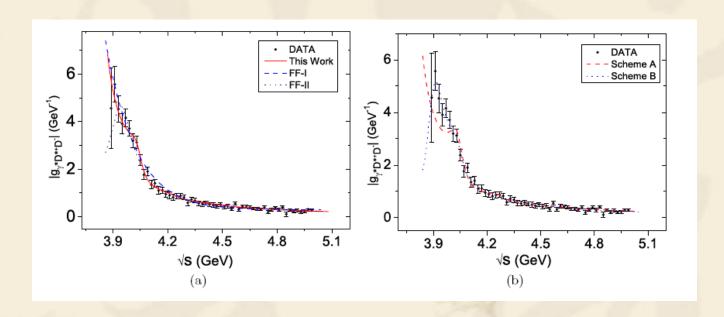
$$\frac{\Gamma(\psi(4040)\to D^0\bar{D}^0)}{\Gamma(\psi(4040)\to D^{*0}\bar{D}^0+c.c.)}=0.05\pm0.03,$$


$$g_{\psi} = 1.73 \pm 0.52 \text{ GeV}^{-1}$$

Particle Data Group 2008

TABLE II: Model parameters obtained from the χ^2 minimization fitting with $g_{\psi} = 1.73 \text{ GeV}^{-1}$. Coupling g_V^{eff} is defined by $g_V^{\text{eff}} \equiv \frac{M_V^2}{f_V} \times g_{VD^*\bar{D}}$. The phase angles are in radian. The reduced χ^2 is $\chi^2/\text{d.o.f} = 41.2/51$.

parameter	ϕ_{LV}	$\phi_{\psi'}$	$\phi_{\psi(3770)}$	$\phi_{\psi(4040)}$	$g_{\psi(4040)}^{\text{eff}}$	$g_{Y(4260)}^{\text{eff}}$	
	-0.41 ± 0.17	2.36 ± 0.32	4.54 ± 0.22	-0.68 ± 0.21	0.37 ± 0.05	0.02 ± 0.03	



Heavy quark mass limit

TABLE III: Model parameters obtained from the χ^2 minimization fitting with $g_{\psi} = 0.52 \text{ GeV}^{-1}$. We fix $m_X = 3.9 \text{ GeV}$ and $\Gamma_X = 89.8 \text{ MeV}$, which are from Ref. [7]. The phase angles are in radian.

parameter	ϕ_{LV}	ϕ_{ψ}	$\phi_{\psi(3770)}$	$\phi_{\psi(4040)}$	$g_{\psi(4040)}^{\text{eff}}$	$g_{Y(4260)}^{\text{eff}}$	$g_{X(3900)}^{\text{eff}}$	$\phi_{X(3900)}$	$\chi^2/\mathrm{d.o.f}$
			3.69 ± 0.22					-	63.9/51
Scheme B	5.69 ± 0.66	4.21 ± 0.43	2.23 ± 0.35	5.62 ± 0.27	0.35 ± 0.07	0.01 ± 0.04	1.89 ± 0.44	3.03 ± 0.26	38.8/49

The form factors obtained by different fitting schemes. With smaller coupling, an observed deficit might imply the presence of X(3900) or might reproduce by other open-channel effects.

Summary

- ❖ The open-channel effects can lead a enhancement near 3.9GeV in e⁺e⁻ →DD process.
- The interference between charmonia can reproduce the lineshape
 of e⁺e⁻→DD,DD⁺ process.
- More experimental data from BES-III will further clarify these issues.

Thank you!