The σ and f0(980) from $K_{e4} \oplus \pi\pi$ scattering data

X .G . Wang

School of Physics, Peking University LPTA, University Montpellier II

April.6, 2010 Lyon

X. G. Wang The σ and f0(980) from $K_{e4} \oplus \pi\pi$ scattering data

G. Mennessier, S. Narison, X. G. Wang, arXiv:1002.1402[hep-ph], to appear in PLB.

(日) (同) (三) (三)

Table of contents

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elastic} \ \pi\pi \ {\rm scattering}\\ {\rm Inelastic} \ \pi\pi \to \pi\pi/\bar{K}K\\ {\rm Summary}\end{array}$

Motivation

- Elastic $\pi\pi \to \pi\pi$ scattering
- Inelastic $\pi\pi \to \pi\pi/\bar{K}K$ scattering

- 4 同 2 4 日 2 4 日 2

- The hadronic and diphoton couplings of light scalar mesons could provide important information about their nature.
- K-matrix model has been used to describe ππ KK strong processes. G. Mennessier, Z. Phys. C16(1983)241.
- We improve the model by introducing a form factor *shape function*.

Motivation

- The hadronic and diphoton couplings of light scalar mesons could provide important information about their nature.
- K-matrix model has been used to describe ππ KK strong processes. G. Mennessier, Z. Phys. C16(1983)241.
- We improve the model by introducing a form factor *shape function*.

Motivation

- The hadronic and diphoton couplings of light scalar mesons could provide important information about their nature.
- K-matrix model has been used to describe ππ KK strong processes. G. Mennessier, Z. Phys. C16(1983)241.
- We improve the model by introducing a form factor *shape function*.

1 channel \oplus 1" bare" resonance

We introduce a real analytic form factor *shape function*, G. Mennessier, S. Narison, W. Ochs, Phys. Lett. **B 665**(2008)205.

$$f_{\rho}(s) = \frac{s - s_{AP}}{s + \sigma_{DP}}, \quad P = \pi, K$$
(1)

It allows for an Alder zero $s = s_{AP}$ and a pole at $-\sigma_{DP} < 0$ to simulate left hand singularities.

同 ト イ ヨ ト イ ヨ ト

The unitary I = 0 S wave $\pi\pi$ scattering amplitude is then written as $\pi^{2} f(x) = \pi^{2} f(x)$

$$T_{PP} = \frac{g_P^2 f_P(s)}{s_R - s - g_P^2 \tilde{f}_P(s)} = \frac{g_P^2 f_P(s)}{\mathcal{D}_P(s)}$$
(2)

where

$$\operatorname{Im}\mathcal{D} = \operatorname{Im}(-g_{\pi}^{2}\tilde{f}_{P}) = -(\theta\rho_{P})g_{P}^{2}f_{P} . \tag{3}$$

and hence

$$\operatorname{Im}(\tilde{f}_{P}) = (\theta \rho_{P}) f_{P} , \quad \rho_{P} = \sqrt{1 - 4m_{P}^{2}/s}.$$
(4)

The unitary I = 0 S wave $\pi\pi$ scattering amplitude is then written as

$$T_{PP} = \frac{g_P^2 f_P(s)}{s_R - s - g_P^2 \tilde{f}_P(s)} = \frac{g_P^2 f_P(s)}{\mathcal{D}_P(s)}$$
(2)

where

$$\operatorname{Im}\mathcal{D} = \operatorname{Im}(-g_{\pi}^{2}\tilde{f}_{P}) = -(\theta\rho_{P})g_{P}^{2}f_{P} . \tag{3}$$

and hence

$$\operatorname{Im}(\tilde{f}_P) = (\theta \rho_P) f_P , \quad \rho_P = \sqrt{1 - 4m_P^2/s}.$$
(4)

(ロ) (部) (E) (E) (E)

The real part of \tilde{f}_P is obtained from a dispersion relation with subtraction at s = 0. The *shape function is simple enough* so that we can get the analytic expression of the dispersion integral

$$\tilde{f}_P(s) = \frac{2}{\pi} (h_0(s) - h_0(0))$$
 (5)

One can find the definition of $h_0(s)$ from G. Mennessier, S. Narison, W. Ochs, Phys. Lett. **B 665**(2008)205.

0 bare resonance $\equiv \lambda \phi^4$ model

In this case, one can introduce the shape function $f_2(s)$

$$T_{PP} = \frac{\Lambda f_2(s)}{1 - \Lambda \tilde{f}_2(s)} , \quad f_2(s) = \frac{s - s_{AP}}{(s + \sigma_{D1})(s + \sigma_{D2})} .$$
(6)

where $\sigma_{D1} = \sigma_{D_{\pi}}$, and

$$\tilde{f}_2(s) = \frac{2}{\pi} [h_2(s) - h_2(0)]$$
 (7)

· < E > < E >

Fit Results

Figure: The fit result of $\pi\pi I = 0$ S-wave phase shift.

글 🕨 🖌 글

Outputs	0 res.	1 res.	2 res.	Average
<i>s</i> _A	0.009(6)	0.0094(fixed)	0.0094(fixed)	
$\sigma_{D\pi}$	6.2(3.2)	1.41(7)	1.78(10)	
σ_{D2}	7.6(4.5)	-	-	
s _{Ra}	-	1.94(9)	26.97(1.54)	
Λ	108(34)	-	-	
$g_{\pi a}$	-	2.54(8)	10.42(30)	
s _{Rb}	-	-	0.61(31)	
$g_{\pi b}$	-	-	-0.39(8)	
$\chi^2_{d.o.f}$	$\frac{12.04}{14} = 0.86$	$\frac{11.73}{15} = 0.78$	$\frac{12.71}{16} = 0.79$	
M_{σ}	468(181)	456(19)	338(18)	452(13)
$\Gamma_{\sigma}/2$	261(211)	265(18)	260(19)	259(16)
$ g_{\sigma\pi^+\pi^-} $	2.58(1.31)	2.72(16)	2.58(14)	2.64(10)

X. G. Wang The σ and f0(980) from $K_{e4} \oplus \pi\pi$ scattering data

メロト メポト メヨト メヨト 二座

0 "bare" resonance model shows that the existence of the σ pole is **not** an artifact of the "bare" resonance entering the parametrization of T_{PP} .

- 4 同 6 4 日 6 4 日 6

2 channels \oplus 2" bare" resonances

The generalization to couple channel is conceptually straightforward.

Consider two 2-body channels coupled to 2 "bare" resonances labeled *a* and *b*, with bare masses squared s_{Ra} and s_{Rb} . We shall work in the *minimal case* with only one shape function as approximation:

$$f(s) = \frac{s - s_A}{s + \sigma_D} . \tag{8}$$

· < E > < E >

The phase shifts and inelasticity η are defined by

$$\eta e^{2i\delta_P} = 1 + 2i\rho_P T_{PP} \ . \tag{9}$$

The experimental data sets we used:

- δ_π: NA48/2 on K_{e4}(below 0.4GeV) and CERN-Munich(above 0.4GeV) for all three fits;
- η: CERN-Munich(Set 1), Hyams(Set 2), Cohen(Set 3);

•
$$\delta_{\pi K} = \delta_{\pi} + \delta_{K}$$
:
Etkin and Martin(Set 1), Cohen(Set 2), Cohen(Set 3)

Fit Results

Figure: The fit result of $\pi\pi I = 0$ S-wave phase shift.

э

æ

Figure: Inelasticity of $\pi\pi I = 0$ S-wave.

(日) (同) (三) (三)

Figure: The phase shift $\delta_{\pi K} = \delta_{\pi} + \delta_{K}$.

2

э

With these choices, we expect to span *all possible regions* of the space of parameters.

(日) (同) (三) (三)

Inelastic $\pi\pi \to \pi\pi/\bar{K}K$

Bare Parameters of the Model

Outputs	Set 1	Set 2	Set 3
s _A	$0.016{\pm}0.004$	$0.013{\pm}0.006$	$0.010{\pm}0.006$
σ_D	$0.740{\pm}0.097$	$0.909{\pm}0.201$	$1.116{\pm}0.262$
s _{Ra}	$4.112{\pm}0.499$	$2.230{\pm}0.271$	$2.447{\pm}0.298$
$g_{\pi a}$	-0.557∓0.177	$0.864{\pm}0.391$	$0.997{\pm}0.516$
gка	$3.191{\pm}0.499$	$1.458{\pm}0.262$	$1.684{\pm}0.363$
s _{Rb}	$1.291{\pm}0.062$	$1.187{\pm}0.094$	$1.354{\pm}0.149$
$g_{\pi b}$	-1.562∓0.117	-1.527∓0.134	-1.756∓0.183
<i>вкь</i>	$0.748{\pm}0.062$	$0.999{\pm}0.149$	$1.159{\pm}0.261$
$\chi^2_{d.o.f}$	70.6/77=0.914	48.8/64=0.759	44.3/58=0.763

<ロ> <同> <同> <目> <日> <日</td>

-2

Physical quantities

Outputs	Set 1	Set 2	Set 3	Average
M_{σ}	435(74)	452(72)	457(76)	448(43)
$\Gamma_{\sigma}/2$	271(92)	266(65)	263(72)	266(43)
$ g_{\sigma\pi^+\pi^-} $	2.72(78)	2.74(61)	2.73(61)	2.73(38)
$ g_{\sigma K^+K^-} $	1.83(86)	0.80(55)	0.99(68)	1.06(38)
M_{f}	989(80)	982(47)	976(60)	981(34)
$\Gamma_f/2$	20(32)	18(16)	18(18)	18(11)
$ g_{f\pi^+\pi^-} $	1.33(72)	1.22(60)	1.12(31)	1.17(26)
$ g_{fK^+K^-} $	3.21(1.70)	2.98(70)	3.06(1.07)	3.03(55)

Table: the mass and width are in MeV, while the couplings are in GeV.

Final Results

For the σ :

Processes	$M_{\sigma}-i\Gamma_{\sigma}/2$	Refs.
Our work		
$K_{e4} \oplus \pi\pi o \pi\pi$	452(13)-i259(16)	
${m K_{e4}} \oplus \pi\pi/Kar{K}$	448(43)-i266(43)	
Average	452(12)-i260(15)	
Othors		
	441+16 :070+9	
$\pi\pi \to \pi\pi \oplus Roy \oplus ChPT$	$441_{-8}^{+12} - 1212_{-15}^{+15}$	Caprini, PRL96
$\pi\pi o \pi\pi/{\sf K}{\sf K} \oplus {\sf Roy}$	$461 \pm 15 - i(255 \pm 16)$	Kaminski, PRD77
$J/\psi ightarrow \omega \pi \pi$	$541 \pm 39 - i(222 \pm 42)$	Ablikim, PLB598
$D^+ ightarrow \pi^+ \pi^- \pi^+$	$478 \pm 29 - i(162 \pm 46)$	Aitala, PRL86

• $|g_{\sigma\pi^+\pi^-}| = 2.65(10) \text{GeV}$ $r_{\sigma\pi K} \equiv \frac{|g_{\sigma K^+ K^-}|}{|g_{\sigma\pi^+\pi^-}|} = 0.37(6)$

- The values of couplings confirm and improve the previous results. R. Kaminski, G. Mennessier, S. Narison, Phys. Lett. **B680**(2009)148
- The sizeable coupling of the σ to $\bar{K}K$ disfavours the usual $\pi\pi$ molecule and 4-quark assignment of the σ , where this coupling is expected to be negligible.

•
$$|g_{\sigma\pi^+\pi^-}| = 2.65(10) \text{GeV}$$

 $r_{\sigma\pi K} \equiv \frac{|g_{\sigma K^+ K^-}|}{|g_{\sigma\pi^+\pi^-}|} = 0.37(6)$

- The values of couplings confirm and improve the previous results. R. Kaminski, G. Mennessier, S. Narison, Phys. Lett. **B680**(2009)148
- The sizeable coupling of the σ to $\bar{K}K$ disfavours the usual $\pi\pi$ molecule and 4-quark assignment of the σ , where this coupling is expected to be negligible.

- 4 同 ト - 4 目 ト - 4 目 ト

•
$$|g_{\sigma\pi^+\pi^-}| = 2.65(10) \text{GeV}$$

 $r_{\sigma\pi K} \equiv \frac{|g_{\sigma K^+ K^-}|}{|g_{\sigma\pi^+\pi^-}|} = 0.37(6)$

- The values of couplings confirm and improve the previous results. R. Kaminski, G. Mennessier, S. Narison, Phys. Lett. **B680**(2009)148
- The sizeable coupling of the σ to $\bar{K}K$ disfavours the usual $\pi\pi$ molecule and 4-quark assignment of the σ , where this coupling is expected to be negligible.

Final Results

For the $f_0(980)$:

• $M_f[MeV] = 981(34) - i18(11)$

•
$$|g_{f\pi^+\pi^-}| = 1.17(26) \text{GeV}$$

•
$$r_{f\pi K} \equiv \frac{|g_{fK+K-}|}{|g_{f\pi^+\pi^-}|} = 2.59(1.34)$$

Large value of $r_{f\pi K} \oplus$ narrow width \implies not pure $(u\bar{u} + d\bar{d})$ non-negligible width into $\pi\pi \implies$ not pure $s\bar{s}$ or $K\bar{K}$ molecule.

同 ト イ ヨ ト イ ヨ ト

Final Results

For the $f_0(980)$:

• $M_f[MeV] = 981(34) - i18(11)$

•
$$|g_{f\pi^+\pi^-}| = 1.17(26) \text{GeV}$$

•
$$r_{f\pi K} \equiv \frac{|g_{fK+K-}|}{|g_{f\pi^+\pi^-}|} = 2.59(1.34)$$

Large value of $r_{f\pi K} \oplus$ narrow width \implies not pure $(u\bar{u} + d\bar{d})$ non-negligible width into $\pi\pi \implies$ not pure $s\bar{s}$ or $K\bar{K}$ molecule.

- 4 同 2 4 回 2 4 U

Final Results

For the $f_0(980)$:

• $M_f[MeV] = 981(34) - i18(11)$

•
$$|g_{f\pi^+\pi^-}| = 1.17(26) \text{GeV}$$

•
$$r_{f\pi K} \equiv \frac{|g_{fK+K-}|}{|g_{f\pi^+\pi^-}|} = 2.59(1.34)$$

Large value of $r_{f\pi K} \oplus$ narrow width \implies not pure $(u\bar{u} + d\bar{d})$ non-negligible width into $\pi\pi \implies$ not pure $s\bar{s}$ or $K\bar{K}$ molecule.

- 4 同 2 4 回 2 4 U

A large *gluonium component* mixed with a $q\bar{q}$ state of the σ and $f_0(980)$ seems to be necessary for evading the previous difficulties.

- 4 同 2 4 日 2 4 日 2 4

- An improved couple channel "K-matrix" model satisfying unitarity is used, taking into account Adler zero and *left hand singularities*.
- We use new $K_{e4}(NA48/2) \oplus different \pi \pi \to \pi \pi/K\bar{K}$ scattering data.
- The σ and $f_0(980)$ masses, widths and hadronic couplings are extracted.
- gluonium component of σ and $f_0(980)$

- An improved couple channel "K-matrix" model satisfying unitarity is used, taking into account Adler zero and *left hand singularities*.
- We use new K_{e4}(NA48/2)⊕differentππ → ππ/KK̄ scattering data.
- The σ and $f_0(980)$ masses, widths and hadronic couplings are extracted.
- gluonium component of σ and $f_0(980)$

- An improved couple channel "K-matrix" model satisfying unitarity is used, taking into account Adler zero and *left hand singularities*.
- We use new $K_{e4}(NA48/2) \oplus different \pi \pi \to \pi \pi / K\bar{K}$ scattering data.
- The σ and $f_0(980)$ masses, widths and hadronic couplings are extracted.
- gluonium component of σ and $f_0(980)$

- An improved couple channel "K-matrix" model satisfying unitarity is used, taking into account Adler zero and *left hand singularities*.
- We use new $K_{e4}(NA48/2) \oplus different \pi \pi \to \pi \pi / K\bar{K}$ scattering data.
- The σ and $f_0(980)$ masses, widths and hadronic couplings are extracted.
- gluonium component of σ and $f_0(980)$

伺 と く ヨ と く ヨ と

Thanks for patience!

X. G. Wang The σ and f0(980) from $K_{e4} \oplus \pi\pi$ scattering data

3