Evasion of helicity selection rule in some charmonium decays

Xiao-Hai Liu

Institute of High Energy Physics, CAS

In collaboration with Qiang Zhao Based on PRD81, 014017(2010)

(for 3rd FCPPL, Lyon, April, 2010)

Outline

- Introduction to the helicity selection rule
- Evasion of the selection rule via charmed hadron loops

•
$$\chi_{c1} \rightarrow VV, \chi_{c2} \rightarrow VP$$

• $\eta_c, \chi_{c0}, h_c \rightarrow \overline{BB} (\overline{pp}, \overline{\Lambda}\Lambda, \overline{\Sigma}\Sigma, \overline{\Xi}\Xi)$

> Summary

Helicity Selection Rule

According to the perturbative method of QCD, V.L. Chernyark et al. have ever obtained the asymptotic behavior for some exclusive processes, e.g.

$$BR_{J_{c\bar{c}}(\lambda)\to h_1(\lambda_1)h_2(\lambda_2)} \sim \left(\frac{\Lambda_{QCD}^2}{m_c^2}\right)^{|\lambda_1+\lambda_2|+2}$$

Phys. Rept. 112, 173 (1984)

The leading order will contribute when $\lambda_1 + \lambda_2 = 0$, while the helicity configurations that do not satisfy this relation will be suppressed.

Helicity Selection Rule

An alternative description of this selection rule with the quantum number named "naturalness"

 $\sigma \equiv P(-1)^J$

The selection rule requires that

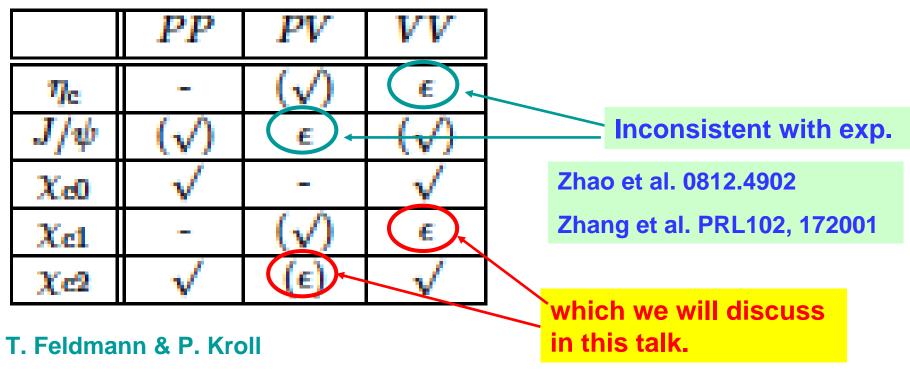
 $\sigma^{initial} = \sigma_1 \sigma_2$

Take the process $J/\psi \rightarrow VP$ as an example $(\sigma^{initial} \neq \sigma_1 \sigma_2)$

 $\mathcal{M}_{J/\psi(\lambda_\psi) o V(\lambda_V) P(\lambda_P)} \propto \ \epsilon_{\mu
ulphaeta} p_\psi^\mu \epsilon_\psi^
u(p_\psi,\lambda_\psi) p_V^lpha \epsilon_V^{*eta}(p_V,\lambda_V)$

In the rest frame of initial state, if $\lambda_v=0$, ε_v can be approximately expressed as a linear combination of the final state momenta. Then the contraction of the Lorentz indices will result in a vanishing amplitude.

S and P-wave Charmonium Decays

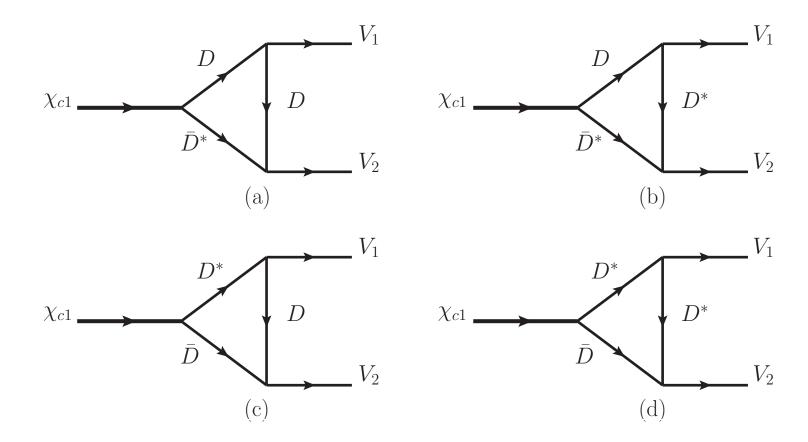


PRD62, 074006 (2000)

$$BR(\chi_{c1} \to K^{*0} \bar{K}^{*0}) = (1.6 \pm 0.4) \times 10^{-3}$$
 PDG

Long-distance Contribution

Charmed meson loops mechanism for $\chi_{c1}{\rightarrow}VV$



The Model

An effective Lagrangian based on heavy quark symmetry and chiral symmetry is adopted in this model. Some relevant Lagrangians are

Colangelo et al. PRD69, 054023

$$\mathcal{L}_{1} = ig_{1}Tr[P_{c\bar{c}}^{\mu}\bar{H}_{2i}\gamma_{\mu}\bar{H}_{1i}] + h.c.$$

$$\mathcal{L}_{2} = ig_{2}Tr[R_{c\bar{c}}\bar{H}_{2i}\gamma^{\mu}\overleftrightarrow{\partial}_{\mu}\bar{H}_{1i}] + h.c.$$
P-wave

$$P_{c\bar{c}}^{\mu} = \left(\frac{1+\cancel{p}}{2}\right) \left(\chi_{c2}^{\mu\alpha}\gamma_{\alpha} + \frac{1}{\sqrt{2}}\epsilon^{\mu\nu\alpha\beta}v_{\alpha}\gamma_{\beta}\chi_{c1\nu} + \frac{1}{\sqrt{3}}(\gamma^{\mu} - v^{\mu})\chi_{c0} + h_{c}^{\mu}\gamma_{5}\right) \left(\frac{1-\cancel{p}}{2}\right)$$
$$R_{c\bar{c}} = \left(\frac{1+\cancel{p}}{2}\right) (\psi^{\mu}\gamma_{\mu} - \eta_{c}\gamma_{5}) \left(\frac{1-\cancel{p}}{2}\right) \longleftarrow \mathbf{S-wave}$$

$$H_{1i} = \left(\frac{1+\cancel{p}}{2}\right) \left[\mathcal{D}_{i}^{*\mu}\gamma_{\mu} - \mathcal{D}_{i}\gamma_{5}\right] \quad (\mathsf{D}^{0}, \mathsf{D}^{+}, \mathsf{D}_{s}^{+})$$
$$H_{2i} = \left[\bar{\mathcal{D}}_{i}^{*\mu}\gamma_{\mu} - \bar{\mathcal{D}}_{i}\gamma_{5}\right] \left(\frac{1-\cancel{p}}{2}\right)$$

The Model

With the effective lagrangian method the rescattering amplitudes are expressed as

$$\mathcal{M}_{1a} = 2ig_{DD^*\chi_{c1}}g_{DDV}f_{D^*DV}\epsilon_{\lambda}^{\chi_{c1}}\epsilon_1^{*\sigma}\epsilon_2^{*\tau}\int \frac{d^4q}{(2\pi)^4}$$
$$\times (q_{1\sigma}+q_{\sigma})\epsilon_{\mu\tau\alpha\beta}p_2^{\mu}(q^{\alpha}-q_2^{\alpha})\frac{g^{\lambda\beta}-q_2^{\lambda}q_2^{\beta}/m_{D^*}^2}{D_aD_1D_2}\mathcal{F}(q^2)$$

$$\mathcal{M}_{1b} = 2ig_{DD^*\chi_{c1}}g_{DDV}f_{D^*DV}\epsilon_{\lambda}^{\chi_{c1}}\epsilon_1^{*\sigma}\epsilon_2^{*\tau} \int \frac{d^4q}{(2\pi)^4} \\ \times \epsilon_{\mu\sigma\alpha\beta}p_1^{\mu}(q_1^{\alpha}+q^{\alpha}) \left[g_{D^*D^*V}(q_{2\tau}-q_{\tau})g_{\gamma\delta}+4f_{D^*D^*V}(p_{2\delta}g_{\tau\gamma}-p_{2\gamma}g_{\delta\tau})\right] \\ \times (g^{\beta\gamma}-q^{\beta}q^{\gamma}/m_{D^*}^2)(g^{\lambda\delta}-q_2^{\lambda}q_2^{\delta}/m_{D^*}^2) \times \frac{1}{D_bD_1D_2}\mathcal{F}(q^2)$$

The phenomenologically introduced form factor reads

$$\mathcal{F}(q^2) = \prod_{i} \left(\frac{m_i^2 - \Lambda_i^2}{q_i^2 - \Lambda_i^2} \right)$$
 -model dependent

where $\Lambda_i = m_i + \alpha \Lambda_{QCD}$

Numerical Result for $\chi_{c1} \rightarrow VV$

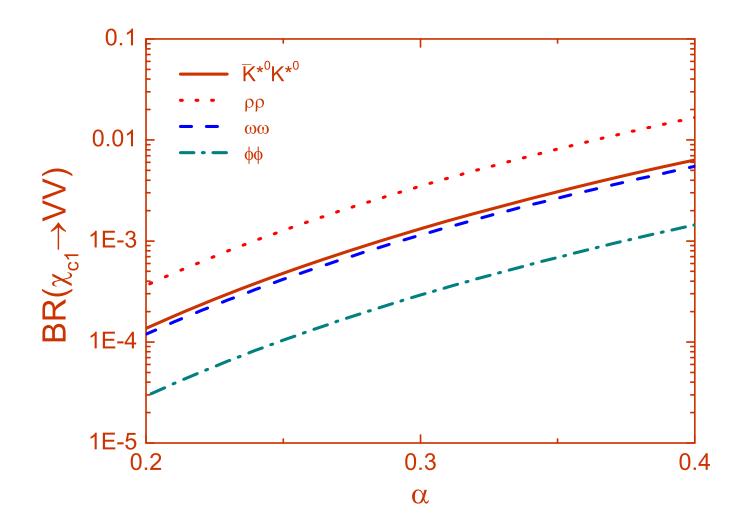
BR ($\times 10^{-4}$)	$K^{*0}\bar{K}^{*0}$	ρρ	ωω	$\phi\phi$		
Exp. data	16 ± 4					
Meson loop	$12\sim 20$	$26\sim54$	$8.7\sim18$	$2.7\sim 4.6$	-	α= 0.3 ~ 0.33
SU(3)(R = 1)	16.0	26.8	8.8	6.8		
SU(3)(R = 0.838)	16.0	32.0	10.6	4.0		

The results of a simple parameterization method based on SU(3) falvour symmetry are also presented in the table, where

 $R \equiv \langle (q\bar{s})_{V_1} (s\bar{q})_{V_2} | \hat{H} | \chi_{c1} \rangle / \langle (q\bar{q})_{V_1} (q\bar{q})_{V_2} | \hat{H} | \chi_{c1} \rangle$

and $R \simeq f_{\pi}/f_K$

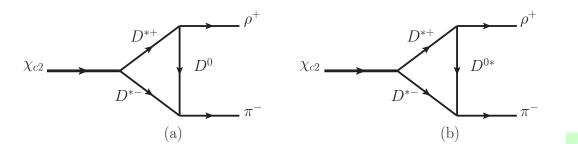
Model-dependence on α

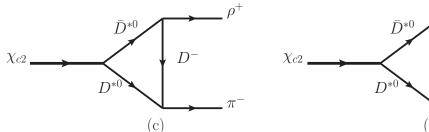


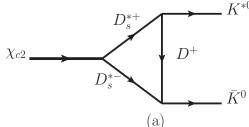
10

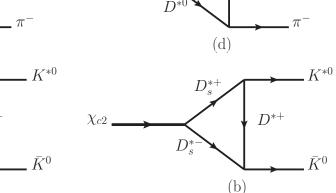
 $\chi_{c2} \rightarrow VP$

 D^{*-}

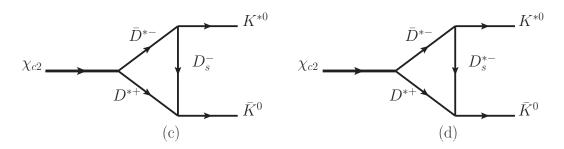








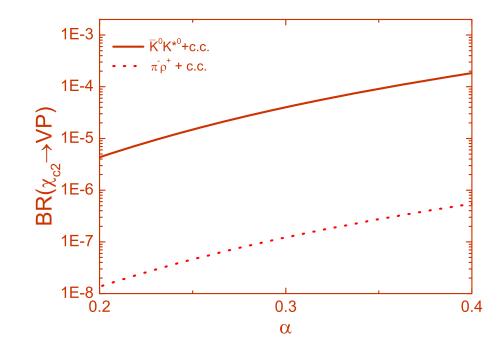
Further suppressed by approximate G-parity or isospin/U-spin conservation. Decay to neutral VP is forbidden by C-parity conservation.



11

 $\chi_{c2} \rightarrow VP$

$BR(\times 10^{-5})$	$K^{*0}\bar{K}^0 + c.c.$	$K^{*+}K^- + c.c.$	$\rho^+\pi^- + c.c.$	
Meson loop	$4.0\sim 6.7$	$4.0 \sim 6.7$	$(1.2\sim 2.0)\times 10^{-2}$	α=0
Exp. data				



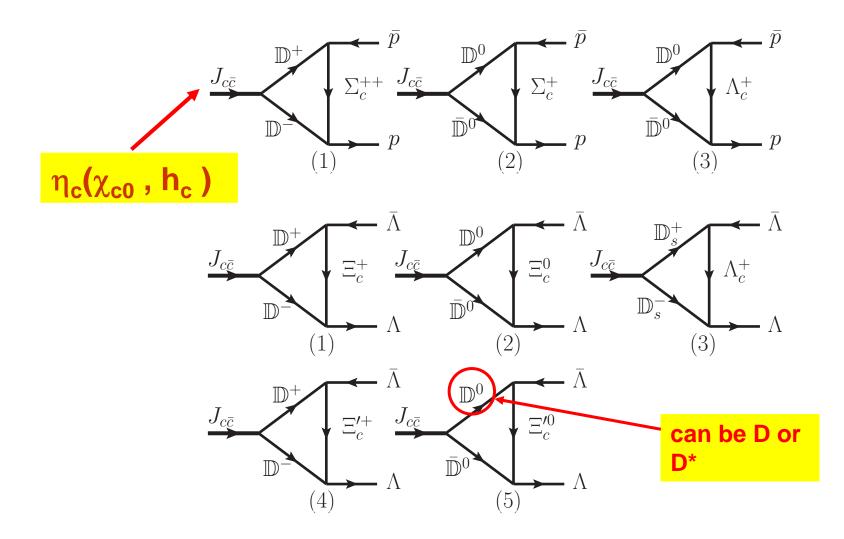
Brief summary

- ★ The long-distance rescattering effects can give sizeable contributions to the prpcesses χ_{c1}→VV and χ_{c2}→VP, which are supposed to be suppressed according to the helicity selection rule.
- * With the parameter α constrained by the measured BR($\chi_{c1} \rightarrow \overline{K}^{*0}K^{*0}$), BR($\chi_{c1} \rightarrow VV$) are predicted to be at least at the order of 10⁻⁴, and BR($\chi_{c2} \rightarrow \overline{K}^{*0}K$ +c.c.) is at the order of 10⁻⁵ that may be detectable.

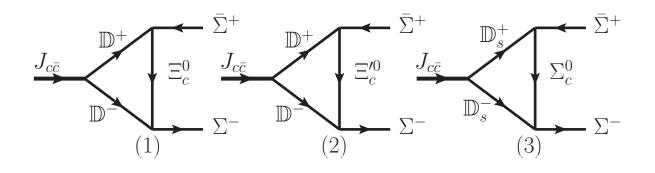
 $\eta_c(\chi_{c0}, h_c) \rightarrow BB$

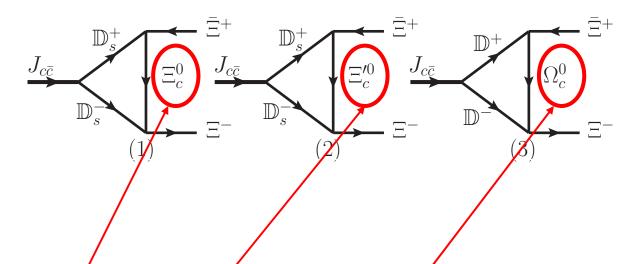
- BB represents the J^P=1/2⁺ octet baryon-antibaryon pairs
- These processes also violate the helicity selection rule
- Some attempts have been made to understand this contradiction
 - **quark-diquark model** M. Anselmino et al.
 - **quark mass correction F. Murgia; M. Anselmino et al.**
 - **mixing with glueball M. Anselmino et al.**
 - **quark pair creation model R.G. Ping et al.**

Model of Charmed Hadron Loops



Model of Charmed Hadron Loops





Exchange of the ground states J^P=1/2⁺ charmed baryons are considered

Amplitude

We take the transition amplitude of $\eta_c \rightarrow \overline{B}B$ via the charmed hadron loops as an example

$$\mathcal{M}_{a} = 2g_{\eta_{c}\mathcal{D}\mathcal{D}^{*}}g_{B_{c}\mathcal{D}B}g_{B_{c}\mathcal{D}^{*}B}\int \frac{d^{4}q}{(2\pi)^{4}}(q_{2\lambda}-q_{1\lambda})\left(-g^{\lambda\mu}+\frac{q_{2}^{\lambda}q_{2}^{\mu}}{m_{D^{*}}^{2}}\right)$$

$$\times \ \bar{u}(p_{2})\left(\gamma_{\mu}+i\frac{\kappa_{B_{c}\mathcal{D}^{*}B}}{2m_{N}}\sigma_{\mu\nu}q_{2}^{\nu}\right)\left(q+m_{B_{c}}\right)\gamma_{5}v(p_{1})$$

$$\times \ \frac{1}{q^{2}-m_{B_{c}}^{2}}\frac{1}{q_{1}^{2}-m_{D}^{2}}q_{2}^{2}-m_{D}^{2}\mathcal{F}(q^{2})$$

$$\mathcal{M}_{b} = 2g_{\eta_{c}\mathcal{D}\mathcal{D}^{*}}g_{B_{c}\mathcal{D}B}g_{B_{c}\mathcal{D}^{*}B}\int \frac{d^{4}q}{(2\pi)^{4}}(q_{2\lambda}-q_{1\lambda})\left(-g^{\lambda\mu}+\frac{q_{1}^{\lambda}q_{1}^{\mu}}{m_{D^{*}}^{2}}\right)$$

$$\times \ \bar{u}(p_{2})\gamma_{5}(q+m_{B_{c}})\left(\gamma_{\mu}+i\frac{\kappa_{B_{c}\mathcal{D}^{*}B}}{2m_{N}}\sigma_{\mu\nu}q_{1}^{\nu}\right)v(p_{1})$$

$$\times \ \frac{1}{q^{2}-m_{B_{c}}^{2}}\frac{1}{q_{1}^{2}-m_{D^{*}}^{2}}\frac{1}{q_{2}^{2}-m_{D}^{2}}\mathcal{F}(q^{2})$$

$$\mathcal{M}_{c} = -2ig_{\eta_{c}\mathcal{D}^{*}\mathcal{D}^{*}}g_{B_{c}\mathcal{D}^{*}B}^{2}\int \frac{d^{4}q}{(2\pi)^{4}}\epsilon^{\mu\nu\lambda\tau}p_{\nu}(q_{2\mu}-q_{1\mu})$$

$$\times \bar{u}(p_{2})\left(\gamma_{\tau}+i\frac{\kappa_{B_{c}\mathcal{D}^{*}B}}{2m_{N}}\sigma_{\tau\xi}q_{2}^{\xi}\right)(\not q+m_{B_{c}})\left(\gamma_{\lambda}+i\frac{\kappa_{B_{c}\mathcal{D}^{*}B}}{2m_{N}}\sigma_{\lambda\sigma}q_{1}^{\sigma}\right)v(p_{1})$$

$$\times \frac{1}{q^{2}-m_{B_{c}}^{2}}\frac{1}{q_{1}^{2}-m_{\mathcal{D}^{*}}^{2}}\frac{1}{q_{2}^{2}-m_{\mathcal{D}^{*}}^{2}}\mathcal{F}(q^{2})$$
17

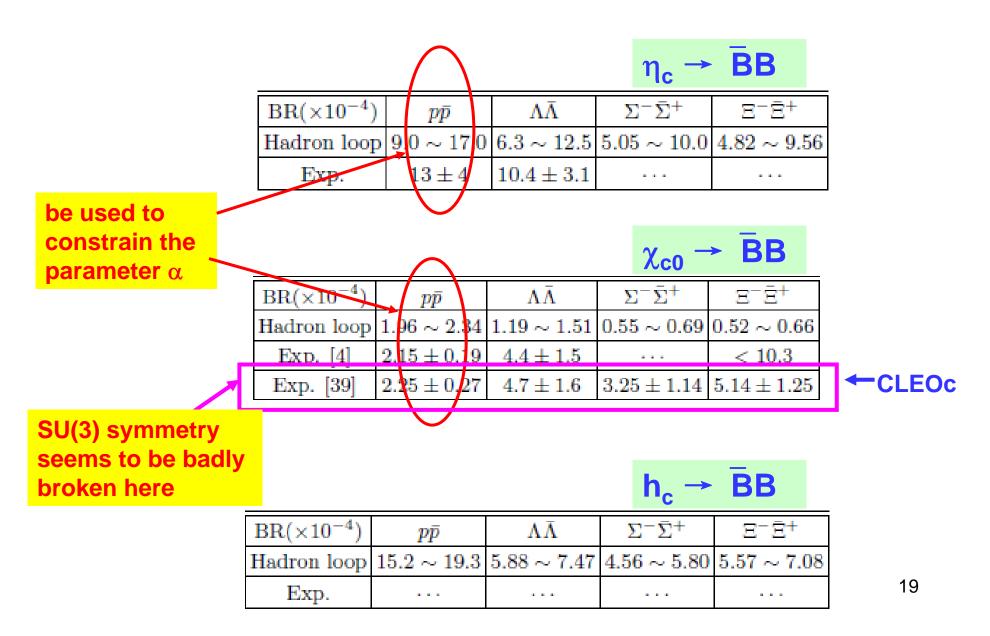
Couplings

There is no much information on the couplings of a charmed baryon to a charmed meson and light baryon. If considering SU(4) symmetry, we would expect the following relations

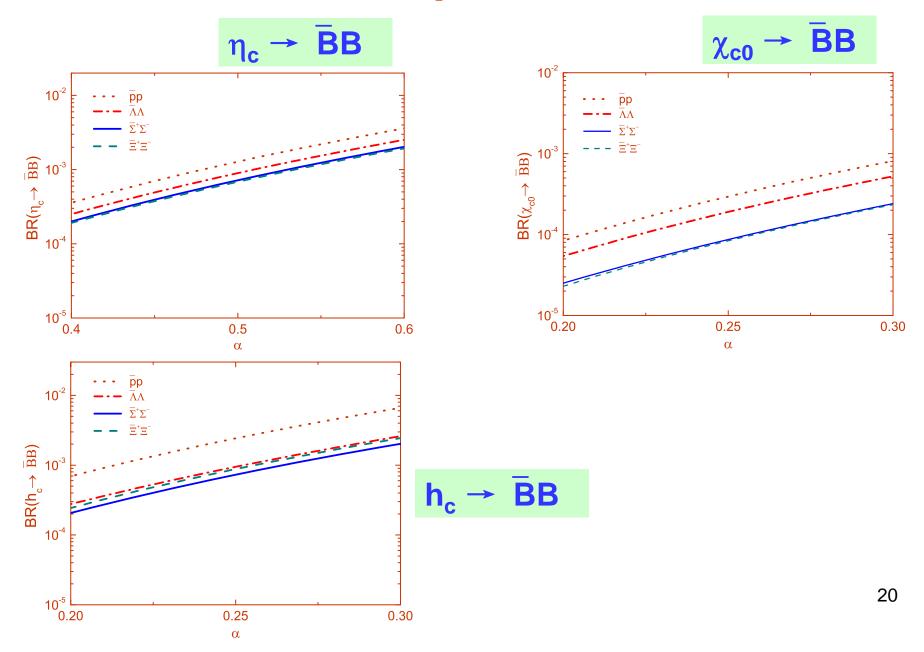
$$\begin{split} [\bar{\Sigma}_{c}^{--}D^{+}p] &= [\bar{\Sigma}_{c}^{--}D_{s}^{+}\Sigma^{+}] = -\sqrt{2}[\bar{\Xi}_{c}^{\prime0}D^{+}\Sigma^{-}] = -\sqrt{2}[\bar{\Xi}_{c}^{\prime-}D_{s}^{+}\Xi^{0}] \\ &= -\frac{2}{\sqrt{3}}[\bar{\Xi}_{c}^{\prime-}D^{+}\Lambda] = -[\bar{\Omega}_{c}^{0}D^{+}\Xi^{-}] = -\sqrt{2}[\bar{p}K^{+}\Sigma^{0}], \\ [\bar{\Lambda}_{c}^{-}D^{+}n] &= [\bar{\Xi}_{c}^{0}D^{+}\Sigma^{-}] = -[\bar{\Xi}_{c}^{-}D_{s}^{+}\Xi^{0}] = -\sqrt{6}[\bar{\Xi}_{c}^{-}D^{+}\Lambda] \\ &= \sqrt{\frac{3}{2}}[\bar{\Lambda}_{c}^{-}D_{s}^{+}\Lambda] = -[\bar{p}K^{+}\Lambda] \end{split}$$

"[...]" denotes the coupling constant of the corresponding vertex

Numerical Results



Model-dependence on α



Summary and Outlook

- We have investigated the evasion mechanism of helicity selection rule via charmed hadron loops. Within a reasonable range of the values of the parameters, the results indicate that such kind of long distance effect will give sizeable contributions to the processes considered.
- > Apart from $\chi_{c1} \rightarrow VV$ and $\chi_{c2} \rightarrow VP$, the evasion mechanism is also further tested in the processes of $\eta_c(\chi_{c0}, h_c) \rightarrow BB$.
- We expect that the BESIII experiments will provide a good opportunity for revealing the underlying mechanisms in charmonium hadronic decays, with its huge data sample.

Thanks!