

Mitsuru Kakizaki (LAPTH, Universite de Savoie, CNRS)

April 6, 2010, 17:05-17:30

Theorie LHC France/GDR Terascale Tools/FCPPL Hadron Satellite@ IPN Lyon

In collaboration with

- Genevieve Belanger
- Eun-Kyung Park
- Sabine Kraml

Alexander Pukhov

Work in progress

- Evidence for physics beyond the standard model (SM):
 - Neutrino oscillations:

Nonzero neutrino masses are required

Neutrinos are massless in the minimal SM

• Non-baryonic dark matter (DM):

 $\Omega_{\rm DM} h^2 = 0.1109 \pm 0.0056$

No candidate particle in the SM

More fundamental theory is needed

Right-handed (s)neutrinos

Supersymmetric (SUSY) models with Dirac neutrinos

Right-handed neutrino superfields:

- $N \begin{cases} \nu_R & \text{Right-handed neutrinos} \implies \text{Dirac neutrino masses} \\ \widetilde{\nu}_R & \text{Right-handed sneutrinos} \implies \text{(Light-mass) DM candidate} \end{cases}$

c.f. $\widetilde{\nu}_L$ DM is no longer viable in the light of Z-width, $\Omega_{\rm DM}$, direct detections

• In addition, sizable sneutrino A_{ν} -parameter

 $\widetilde{
u}_R$ was in thermal equilibrium

The predicted relic abundance is in the desired range

[Arkani-hamded,Hall,Murayama,Weiner(2001);

Arina, Fornengo (2007); Thomas, Tucker-Smith, Weiner (2008)]

c.f. Negligible A_{ν} -parameter \longrightarrow Non-thermal $\widetilde{\nu}_R$ DM

[Asaka,Ishiwata,Moroi(2006)]

April 6, 2010

Mitsuru Kakizaki

Outline

• Detailed investigation of the thermal right-handed sneutrino DM scenario

Up-to-date direct detection constraints on sneutrino DM

Characteristic collider signatures

- **1**. Motivation
- 2. The model (review)
- **3.** Right-handed sneutrino dark matter
- 4. Collider signatures
- 5. Summary

April 6, 2010

Mitsuru Kakizaki

2. The model

[Arkani-hamded,Hall,Murayama,Weiner(2001)]

• Only two new soft parameters (for one generation):

 $\mathcal{L} \supset -\widetilde{m}_N^2 \widetilde{\nu}_R^* \widetilde{\nu}_R - A_{\nu} h_2 l \widetilde{\nu}_R^* + \text{h.c.}$

 A_{ν} is not related to the neutrino Yukawa coupling

- n.b. Sizable A_{ν} is possible when only SUSY fields break the symmetry that suppresses the neutrino Yukawa coupling: The origin of this A_{ν} is different from that of other A-parameters
- Sneutrino mass matrix:

120

3. Right-handed sneutrino DM

CDMS

-8

-9

April 6, 2010

-9

10 ⁻¹⁰

Mitsuru Kakizaki

XENON10

4. Collider signatures

• To reconcile the GeV $\tilde{\nu}_R$ scenario with the DM exp. constraints, lighter gauginos, heavier sleptons are desirable (In most cases $\tilde{\chi}_1^{\pm} < \tilde{\tau}_1$ for $\tilde{m}_L = \tilde{m}_E$)

- $\widetilde{\nu}_R$ is a viable thermal DM candidate
- From up-to-date direct detection results, we constrained the thermal $\widetilde{\nu}_B$ DM scenario
- In progress:
 - Heavier LSP sneutrino
 - Collider signatures
 - Indirect detections
 - 3 $\widetilde{\nu}_{R}$ generation case
 - Including RGE analysis April 6, 2010

Thermal DM

- Thermal production of cold relics $\,\chi\,$:
 - ${\scriptstyle \bullet}\, \chi \,$ were in thermal equilibrium in the early universe

After the annihilation rate dropped below the expansion rate, the number density per comoving volume is almost fixed

• Typical annihilation cross section of WIMPs with $m \sim \mathcal{O}(\text{TeV})$:

$$\sigma v \sim \frac{\pi \alpha^2}{m^2} \sim \mathcal{O}(\text{pb})$$

The predicted thermal relic density is in the desired range!!!