

The MicroRadon Project

José Busto

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

²¹⁹Rn (3.96 s)

Radon : Radioactive, Natural, Noble gas, produced in U and Th decay chain

²²²Rn (3.82 d)

²²⁰Rn (55 s)

Origin of radon background

α	5 à 8 MeV
β	≤ 3.27 MeV
γ	≤ 2.20 MeV
Nucleus recoil	~ 100 keV
Neutron	(α ,n) on light nucleus

Radon contraints

LZ Dark Matter Experiment (Liquid Xe TPC)

Quentin Riffard - LBNL GDR Deep Underground Physics – 31 Mai to 2 June 2021

The MicroRadon Projet

Master Projet of IN2P3 Start in Janury 2020 (-> COVID)

Goal : study the fundamental mechanisms of radon background (emanation and transport) under severe or special experimental conditions. Develop new materials and capture techniques.

The MicroRadon Projet

Master Projet of IN2P3 Start in Janury 2020 (with COVID)

Goal : study the fundamental mechanisms of radon background (emanation and transport) under severe or special experimental conditions. Develop new materials and capture techniques.

The MicroRadon Projet

Master Projet of IN2P3 Start in Janury 2020 (with COVID)

Goal : study the fundamental mechanisms of radon background (emanation and transport) under severe or special experimental conditions. Develop new materials and capture techniques.

Equipment and facilities

Radon detection

AlphaGuard (~ 5 Bq/m³)

Rad 7 ($\sim 5 \text{ Bq/m}^3$)

RadonEye (~10 Bq/m³)

LUCAS cell (~20 Bq/m³)

> Radon emanation chamber

Very big Chambre

SuperNEMO, JUNO emanation in N₂

Small Chambre (for expensive gases)

Emanation studies in Ar, Xe, He

Cryogenic Chambre

Cu getter émanation for DUNE ($20 \text{ to} - 90^{\circ} \text{ C}$)

Radon chamber (Study of 210Po deposit)

²¹⁰Po deposit
Cu plates for Dark Side

- Preliminary tests for DAMIC

XIA UltraLo-1800 $\,\alpha$ spectrometer

Possible collaboration with IM2NP of Marseille to used their XIA UltraLo α spectrometer

5 L, 25 kBq/m³ Temperature and %HR controled

30 L, 100 kBq/m³ + test chambre

Study of dynamical radon capture [+ 20 to - 80 °C]

Porous optimization for Rn adsorption in carbon

adsorbents \rightarrow SuperNEMO

$$K = \frac{Rn \text{ in the Adsorbent}}{Rn \text{ in the Gas}} \quad [m^3/kg]$$

Radon diffusion (bi-)chamber

Radon diffusion studies

- JUNO liner in air/water
- Dark Side transportation plastic bag. (²¹⁰Po deposit)

Some prelimilary results

Adsorption **on silver** zeolite

Adsorption **on silver** zeolite

Huge adsorption (K factor)

The optimal adsorption of radon depends on the optimal porosity and chemical composition.

Remarks

□ Ag-ETS-10 is very expensive (several tens of \$/g if more than 10 kg)

□ Very high sensitivity of humidity

Understand and improve the adsorption characteristics of new adsorbents

□ Xenon / Radon adsorption selectivity with macromolecular cages : Cryptophane

• Used for xenon storage

Tunable size of the cage

=> Xenon and Radon very close atomic radius ($\rho_{Xe} = 4.10 \text{ Å}, \rho_{Rn} = 4.17 \text{ Å}$)

ightarrow purification of Xenon by gas chromatography is very challenging

Study radon and xenon adsorption on crytophanes

Adsorbent	Rn capture in N2 @ - 30°C	Xenon adsorption @ -30°C
Cryptophane A in MCM-41	107 m3/kg	0.11 mmol/g
Active charcoal K 48	180 m3/kg	2.31mmol/g

Higher selectivity for radon
 compare to classical active charcoals
 → highly promising Rn/Xe selective materials

CARXEN Interdisciplinary projet (IN2P3 + INC)

Emanation in Xe Big amount of data emanation in N₂, air, Ar,, but almost nothing in the Xe

To be confirmed with other Rn sources

depend on the texture, porosity, roughness, of the sources

Liquid phase

What is the effect of liquid phase on radon emanation ?

> Available cryogenic system => - 90°C

=> Study of liquid phase effect at -73° C at different pressures.

Liquid phase

What is the effect of liquid phase on radon emanation ?

Available cryogenic system => - 90°C

=> Study of liquid phase effect at -73° C at different pressures.

Several measures :

- in gas phase @ 3 bar and 4 bar
- in liquid phase @ 7 bar

Emanation in liquid phase Xe ~ 1.4 x Emanation in gas phase

Very preliminary results

Similar results with CO₂

Need additional measurement

Status and conclusion

- Start in 01/2020 for 3 years (100 k€)
 - Purchase and implementation of basic tools
 - Start preliminary studies (emanation and transport); found extrordinary adsorbents
- Extended by one year -> 01/2024
- Possibility of permanent status (DAS A. Luccotte)
 - Complete studies on emanation and transport as a function of pressure and temperature for reference sources --> modelling
 - Develop new adsorbents with high adsorption rate and high selectivity for Rn.
 - Develop synergies with other fields: geology, hydrogeology,