CUPID-1T and the future neutrinoless double beta decay experiments

Pía Loaiza

GDR DUPhy, October 2022

Neutrinoless double beta decay in a nutshell

$$
(A, Z) \rightarrow (A, Z+2) + e^- + e^-
$$

Considering light neutrino exchange:

$$
\frac{1}{\tau_{1/2}^{0\nu}} = |m_{\beta\beta}|^2 |M^{0\nu}|^2 G^{0\nu}(Q, Z)
$$

 $M^{0\nu}$: nuclear matrix element $G^{0\nu}(Q, Z)$: known phase-space factor

Effective Majorana mass

U: PMNS matrix

If inverted hierarchy: $m_3 \ll m_1 \ll m_2$

$$
If it is a set of this example.\\
$$

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha} m_2 + |U_{e3}|^2 e^{2i\beta} m_3$

If normal hierarchy: $m_1 \ll m_2 \ll m_3$

• Summed energy of the two electrons at Q_{BB} eg, in calorimeters, CUPID, LEGEND

• and topology reconstruction of the two eeg, NEXT, nEXO, SuperNEMO

Background index

CUPID-Mo: $Q_{\beta\beta} = 3034.40 \text{ keV}$

 60° Co_. 60° Co

 208 TI

ase cuts + PSD + AC

 e cuts + PSD + AC + L^{*}

 210 Po

Next generation $0\nu\beta\beta$ searches

5-10 years from now

Bottom of the inverted hierarchy region 18.4 meV

- $T_{1/2} \sim 10^{27}$ y
- Background index ~ 10^{-4} - 10^{-5} counts/keV kg y

Next to next generation $0\nu\beta\beta$ searches

Cosmic rays background

- Once the experiments are placed in underground sites, high energy muons, $E > 100$ GeV, can produce background in $0\nu\beta\beta$ searches due to ionization in materials
- Muons can be tagged by:
	- reconstruction of the muon tracks in liquid Xe experiments
	- high multiplicity events in granular detectors
- Eg : CUPID, LNGS with only anticoincidence cut, muons contribute 1.4 x 10⁻⁴ cts/keV kg y

Cosmic rays background : muon induced neutrons

- Muons interact in materials and produce neutrons via spallation or hadronic showers. These neutrons are highly energetic, E up to 10 GeV
- Neutrons can then be captured, give unstable isotopes, which may decay with the emission of prompt gammas or e⁻ with energies in the $0\nu\beta\beta$ ROI, 2.5 – 3 MeV region . (*Activation in-situ)*
- Example: LEGEND-1000 is looking for $0\nu\beta\beta$ decay in ⁷⁶Ge.

-^{77m}Ge is formed by neutron capture on ⁷⁶Ge, its decay is expected to be the dominant in-situ cosmogenic contribution

- At Gran Sasso depth , the background expected is (1.1 \pm 0.2) $10^{-4} \frac{\text{cts}}{\text{keV keV}}$ keV kg y

before active background rejection cuts

- Reduced to 8.6 x 10⁻⁷ cts/keV kg y thanks to passive neutron moderators combined with delayed coincidences

- The collaboration is considering as an option to place the detector in SNOLAB

GOING TO LSM IS DEFINITELY AN ADVANTAGE FOR FUTURE $0\nu\beta\beta$ EXPERIMENTS α_{as}

- ²³⁸U, ²³²Th, ⁴⁰K present in the rock and in the materials used to build the experiment
- γ 's up to 2.6 MeV but can be summed, β 's up to 3.2 MeV, α 's from 3 to 10 MeV
- We need to carefully select the materials
- Surface cleaning
- Reduce exposure to air
- Can be discriminated :
- Active discrimination (eg scintillating bolometers)
- Delayed coincidences

²³⁸U decay chain Natural radioactivity

Decay chain usually not in equilibrium

Natural radioactivity

²³²Th decay chain

Screening techniques

To get to the background levels required today we need sensitivities $\approx 10 \mu Bq/kg$

ICPMS, NAA ok, but can give information only on ²³⁸U and ²³²Th

HPGe can assay the dangerous radiocontaminants, but sensitivity is not enough

FOR NEXT NEXT GENERATION EXPERIMENTS WE SHOULD COME UP WITH INNOVATIVE SCREENING TECHNIQUES

Neutrons from environment and materials

Produced by :

- Fission
- (α, n)

 $E < 10$ MeV

Example in the rock :

 $18Q + \alpha \rightarrow 21Ne + n$

Example in materials: PTFE

 $^{19}F + \alpha \rightarrow ^{22}Na + n$

- The neutrons can then produce :
	- In-situ activation -> prompt gammas, e-
	- Gammas by inelastic scattering
- Neutrons from the cavern can be efficiently suppressed by passive shielding, for example, polyethylene , water 48 cm PE reduce neutron flux by a factor \sim 2 x 10⁶ (depending on E_n)

Background from $2\nu\beta\beta$

• $2\nu\beta\beta$ -decay tail can get into ROI due to limted energy resolution

• Random coincidence of $2\nu\beta\beta$ events

Sensitive background and exposure for present and future experiments

From CUPID to CUPID-1T

Scintillating bolometers with dual read out capable to discriminate surface α background

Increase the mass and reduce the backgrounds

CUPID-1T expected sensitivity

How to reduce $2\nu\beta\beta$ pile-up ? Strategies for CUPID

Critical background component: random coincidence of $2\nu\beta\beta$ events. 100 Mo is the fastest $2\nu\beta\beta$ emitter with $\tau_{1/2}^{2\nu}$ = 7. 1 \times 10 18 y

To discriminate pile-up we need:

- fast sensor response
- signal/noise large enough

At present the use of only the light signal is not viable due to low signal/noise ratio

Work in progress to improve pile-up discrimination for CUPID: Neganov Luke assisted NTDs, algorithms

BI expected $\sim 10^{-4}$ cts/keV kg y

How to reduce $2\nu\beta\beta$ pile-up ? : Strategies for CUPID-1T

TES : Transition Edge Sensors

- Superconducting films
- SQUID readout
- Fast signal, rise time \approx 100 μ s (depending on implementation)
- Multiplexing

MMC : Metallic Magnetic Calorimeters

- Au:Er/ Ag:Er paramagnetic sensor
- SQUID readout
- Fast signal, rise time: 500 µs (crystal), 200 µs LD (AMORE) (depending on implementation)
- **Multiplexing**

Other options

MKIDS

Neganov Luke assisted LD

- Need to go to a thin film
- JFET readout (as in CUPID)
- R&D needed

R & D to improve background

CROSS: rejection of surface events by pulse shape discrimination assisted by

BINGO: See Hawraa's talk

- Internal active veto, $ZnWO₄$ or BGO scintillators
- Reduction of passive materials
- Neganov-Luke Light Detectors

- Next to next generation $0\nu\beta\beta$ experiments will be designed for discovery, and not limit setting
- Will fully explore inverted hierarchy and part of normal hierarchy
- Formidable experimental challenges for ton-year exposures
- Will need extremely low backgrounds
- \rightarrow Increase exposure and reduce backgrounds !

In this framework, going to a deep site like LSM is definitely an advantage

- CUPID-1T, the next to next generation bolometric $0\nu\beta\beta$ search:
- Increase mass to 1 ton of $0\nu\beta\beta$ isotope
- Reduce backgrounds to 5 x 10^{-6} cts/keV kg y
- Discovery sensitivity in 10 y :
- 8×10^{27} y
- m_{B} < 4 7 meV

Solar Neutrinos

Elastic scattering

ES $v + e - > v + e$

- e- non-isotropic, continuous spectrum
- Only ${}^{8}B$ relevant background for $0\nu\beta\beta$
- Significant only for liquid scintillators with dissolved sources
- Partially suppressed exploiting signal directionality

Charge Current

$$
CC \t A^{Z} + v \t - > A^{Z+1} + e^{-} [+ \gamma's] + Q_{v} \t (prompt)
$$

 A^Z + v -> A^{Z+2} + β + ν [+ γ's] + Q_β (delayed)

• 10^{-3} - 10^{-1} evts/keV ton y

More radionucleids

Antropogenic

- Ag in Kamland
- Sr/Y, Rb in our bolometers

Cosmogenics on surface

- in Copper
- in Ge, LMO's,
- In Ar

From CUPID to CUPID-1T

