CUPID-1T and the future neutrinoless double beta decay experiments

Pía Loaiza

GDR DUPhy, October 2022

Neutrinoless double beta decay in a nutshell

$$(A,Z) \rightarrow (A,Z+2) + e^- + e^-$$

Considering light neutrino exchange:

$$\frac{1}{\tau_{1/2}^{0\nu}} = |m_{\beta\beta}|^2 |M^{0\nu}|^2 \,\mathrm{G}^{0\nu}(\mathrm{Q},\mathrm{Z})$$

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha} m_2 + |U_{e3}|^2 e^{2i\beta} m_3$

 $M^{0\nu}$: nuclear matrix element G^{0v}(Q, Z) : known phase-space factor

Effective Majorana mass

U: PMNS matrix

 α, β : Majorana phases

If inverted hierarchy: $m_3 \ll m_1 \ll m_2$

If normal hierarchy: $m_1 \ll m_2 \ll m_3$

• Summed energy of the two electrons at $Q_{\beta\beta}$ eg, in calorimeters, CUPID, LEGEND

• and topology reconstruction of the two eeg, NEXT, nEXO, SuperNEMO

Background index

•
$$BI = \frac{background\ counts\ at\ Q_{\beta\beta}}{\Delta E\ x\ mass\ x\ time} \frac{counts}{keV\ x\ kg\ x\ year}$$

 ΔE according to resolution •

CUPID-Mo: $Q_{\beta\beta} = 3034.40 \text{ keV}$

Zero events in ROI, exposure = 2.71 kg y

GDR DUPhy, October 2022, Pia Loaiza

Next generation $0\nu\beta\beta$ searches

5-10 years from now

Bottom of the inverted hierarchy region 18.4 meV

- T_{1/2} ~ 10²⁷ y
- Background index ~
 10⁻⁴ 10⁻⁵ counts/keV kg y

Next to next generation $0\nu\beta\beta$ searches

Cosmic rays background

- Once the experiments are placed in underground sites, high energy muons, E > 100 GeV, can produce background in $0\nu\beta\beta$ searches due to ionization in materials
- Muons can be tagged by:
 - reconstruction of the muon tracks in liquid Xe experiments
 - high multiplicity events in granular detectors
- Eg : CUPID, LNGS with only anticoincidence cut, muons contribute 1.4 x 10⁻⁴ cts/keV kg y

Cosmic rays background : muon induced neutrons

- Muons interact in materials and produce neutrons via spallation or hadronic showers. These neutrons are highly energetic, E up to 10 GeV
- Neutrons can then be captured, give unstable isotopes, which may decay with the emission of prompt gammas or e⁻ with energies in the $0\nu\beta\beta$ ROI, 2.5 3 MeV region . (Activation in-situ)
- Example: LEGEND-1000 is looking for $0\nu\beta\beta$ decay in ⁷⁶Ge.

- ^{77m}Ge is formed by neutron capture on ⁷⁶Ge, its decay is expected to be the dominant in-situ cosmogenic contribution

- At Gran Sasso depth , the background expected is (1.1 \pm 0.2) $10^{-4} \frac{\text{cts}}{\text{keV kg y}}$

before active background rejection cuts

- Reduced to 8.6 x 10⁻⁷ cts/keV kg y thanks to passive neutron moderators combined with delayed coincidences
- The collaboration is considering as an option to place the detector in SNOLAB

GOING TO LSM IS DEFINITELY AN ADVANTAGE FOR FUTURE $0\nu\beta\beta$ experiments

- ²³⁸U, ²³²Th, ⁴⁰K present in the rock and in the materials used to build the experiment
- γ 's up to 2.6 MeV but can be summed, β 's up to 3.2 MeV, α 's from 3 to 10 MeV
- We need to carefully select the materials
- Surface cleaning
- Reduce exposure to air
- Can be discriminated :
- Active discrimination (eg scintillating bolometers)
- Delayed coincidences

Natural radioactivity ²³⁸U decay chain

Decay chain usually not in equilibrium

Natural radioactivity

²³²Th decay chain

GDR DUPhy, October 2022, Pia Loaiza

Screening techniques

	Measure	Sensitivities
Mass Spectrometry, ICPMS, GDMS	Parent of chain	~ 10 µBq/kg
Neutron Activation Analysis	Parent of chain	~ 10 µBq/kg
Gamma-ray spectrometry, HPGe	Daughters	~ 100 µBq/kg - 1 mBq/kg

To get to the background levels required today we need sensitivities $\approx~10~\mu\text{Bq/kg}$

ICPMS, NAA ok, but can give information only on ²³⁸U and ²³²Th

HPGe can assay the dangerous radiocontaminants, but sensitivity is not enough

FOR NEXT NEXT GENERATION EXPERIMENTS WE SHOULD COME UP WITH INNOVATIVE SCREENING TECHNIQUES

Neutrons from environment and materials

Produced by :

- Fission
- (α, n)

E < 10 MeV

Example in the rock :

 $^{18}\text{O} + \alpha \rightarrow ^{21}\text{Ne} + n$

Example in materials: PTFE

 ${}^{19}\text{F} + \alpha \rightarrow {}^{22}\text{Na} + n$

- The neutrons can then produce :
 - In-situ activation -> prompt gammas, e-
 - Gammas by inelastic scattering
- Neutrons from the cavern can be efficiently suppressed by passive shielding, for example, polyethylene, water 48 cm PE reduce neutron flux by a factor ~ 2 x 10⁶ (depending on E_n)

ock :

Background from $2\nu\beta\beta$

• $2\nu\beta\beta$ -decay tail can get into ROI due to limted energy resolution

• Random coincidence of $2\nu\beta\beta$ events

Sensitive background and exposure for present and future experiments

From CUPID to CUPID-1T

Scintillating bolometers with dual read out capable to discriminate surface α background

Increase the mass and reduce the backgrounds

CUPID-1T expected sensitivity

How to reduce $2\nu\beta\beta$ pile-up ? Strategies for CUPID

Critical background component: random coincidence of $2\nu\beta\beta$ events. ¹⁰⁰Mo is the fastest $2\nu\beta\beta$ emitter with $\tau_{1/2}^{2\nu}$ = 7.1 x 10¹⁸ y

To discriminate pile-up we need:

- fast sensor response
- signal/noise large enough

At present the use of only the light signal is not viable due to low signal/noise ratio

Work in progress to improve pile-up discrimination for CUPID: Neganov Luke assisted NTDs, algorithms

BI expected ~ 10^{-4} cts/keV kg y

How to reduce $2\nu\beta\beta$ pile-up ? : Strategies for CUPID-1T

TES : Transition Edge Sensors

- Superconducting films
- SQUID readout
- Fast signal, rise time ~ 100 μs
 (depending on implementation)
- Multiplexing

MMC : Metallic Magnetic Calorimeters

- Au:Er/ Ag:Er paramagnetic sensor
- SQUID readout
- Fast signal, rise time: 500 μs (crystal), 200 μs LD (AMORE) (depending on implementation)
- Multiplexing

Other options

MKIDS

Neganov Luke assisted LD

- Need to go to a thin film
- JFET readout (as in CUPID)
- R&D needed

R & D to improve background

CROSS: rejection of surface events by pulse shape discrimination assisted by

BINGO: See Hawraa's talk

- Internal active veto, ZnWO₄ or BGO scintillators
- Reduction of passive materials
- Neganov-Luke Light Detectors

surface α event

g

- Next to next generation $0\nu\beta\beta$ experiments will be designed for discovery, and not limit setting
- Will fully explore inverted hierarchy and part of normal hierarchy
- Formidable experimental challenges for ton-year exposures
- Will need extremely low backgrounds
- \rightarrow Increase exposure and reduce backgrounds !

In this framework, going to a deep site like LSM is definitely an advantage

- CUPID-1T, the next to next generation bolometric $0\nu\beta\beta$ search:
- Increase mass to 1 ton of $0\nu\beta\beta$ isotope
- Reduce backgrounds to 5 x 10⁻⁶ cts/keV kg y
- Discovery sensitivity in 10 y :
- 8 x 10²⁷ y
- $m_{\beta\beta} < 4-7 \text{ meV}$

Solar Neutrinos

Elastic scattering

ES v + e- -> v + e-

- e- non-isotropic, continuous spectrum
- Only ⁸B relevant background for $0\nu\beta\beta$
- Significant only for liquid scintillators with dissolved sources
- Partially suppressed exploiting signal directionality

Charge Current

CC
$$A^{Z} + v \rightarrow A^{Z+1} + e^{-} [+ \gamma's] + Q_{v}$$
 (prompt)

 $A^{Z} + v \rightarrow A^{Z+2} + \beta^{-} + v [+ \gamma's] + Q_{\beta}$ (delayed)

- 10⁻³ 10⁻¹ evts/keV ton y
- Depends on isotope, could be suppressed via delayed coincidences, event topology odd-odd even-even -68 $^{76}\mathrm{Kr}$ -70 ^{76}R $\Delta [MeV]$ -72 $^{76}\mathrm{Ge}$ -74 76 Se -76 3233 343536 Ζ

More radionucleids

Antropogenic

- Ag in Kamland
- Sr/Y, Rb in our bolometers

Cosmogenics on surface

- in Copper
- in Ge, LMO's,
- In Ar

From CUPID to CUPID-1T

Parameter	CUPID Baseline	CUPID-reach	CUPID-1T
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_{2}^{100}\mathrm{MoO}_{4}$
Detector mass (kg)	450	450	1871
100 Mo mass (kg)	240	240	1000
Energy resolution FWHM (keV)	5	5	5
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	2×10^{-5}	5×10^{-6}
Containment efficiency	78%	78%	78%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity $(90\% \text{ C.L.})$	$1.4 \times 10^{27} \mathrm{~y}$	$2.2 \times 10^{27} \text{ y}$	$9.1 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1 \times 10^{27} { m y}$	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} \text{ y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	1017 meV	$8.414~\mathrm{meV}$	$4.1–6.8~{\rm MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	$1220~\mathrm{meV}$	915 meV	$4.47.3~\mathrm{meV}$