

BINGO: Bi-Isotope $0\nu2\beta$ Next Generation Observatory An Overview

HAWRAA KHALIFE *

ON BEHALF THE BINGO COLLABORATION

GDR Deep Underground Physics plenary meeting 19-21 Oct 2022

* Postdoc at IRFU/CEA Paris-Saclay | Hawraa.khalife@cea.fr

Neutrinoless double beta decay

Neutrinoless double-beta decay: (A, Z) \rightarrow (A, Z+2) + 2e⁻

Its observation will:

- Ascertain the Majorana nature of neutrino ($\nu=\overline{\nu})$
- Confirm lepton number violation
- Measure $T^{0
 u}_{1/2}$ that will lead to m_{etaeta} measurement

- BINGO will set the grounds for a large scale bolometric experiment searching for neutrinoless double-beta decay (0ν2β) using revolutionary technologies
- It aims to reduce dramatically the background in the region of interest, which is one of the most limiting factors for current and future 0v2β experiments

GDR DUPhy Oct 2022 - H. KHALIFE

Bolometric technique (Dual read-out)

Bolometric compounds' strong and weak points

Li₂MoO₄

- Embeds ^{100}Mo with a $Q_{\beta\beta}$ at 3034 keV
- This crystal was validated by the CUPID-Mo demonstrator
 - Excellent energy resolution
 - High internal radio-purity
 - Easiness in crystallization
- Fast $2\nu 2\beta$ decay \rightarrow background in the region of interest (ROI) due to $2\nu 2\beta$ random coincidences

TeO₂

- Embeds ^{130}Te with a $\textbf{Q}_{\beta\beta}$ at 2527 keV
- This crystal was validated by the CUORE experiment
 - Excellent energy resolution
 - High internal radio-purity
 - Easiness in crystallization
- Q_{ββ} below the end line (at 2615 keV line of ²⁰⁸Tl) of natural gamma radioactivity
- Very poor scintillator \rightarrow no alpha background rejection

Background problems, in addition to possible surface contamination from surrounding materials

The 3 pillars for background reduction

Assembly upgrade **Neganov-Luke light detectors** Active veto Use an active shield, based on ZnWO₄ or BGO scintillators Less passive materials Higher signal to noise ratio 1-lower energy threshold Reduce the Cu materials seen by the main absorber Suppress the external gamma background and reject using a LD as an active shield surface radioactivity from the crystals that face the suppress external γ background using the active shield active shield using anti-coincidence reduction of the total surface radioactivity contribution 2- reject the background induced by the random coincidences of $2\nu 2\beta$ events in LMO active shield **Compact assembly** Amplification of the tiny Cherenkov signal (TeO₂) Background reduction through anticoincidence cuts Li_2MoO_4 Or TeO_2 suppress alphas Light detector

GDR DUPhy Oct 2022 - H. KHALIFE

Assembly upgrade

New assembly test on Li₂MoO₄

- The assembly was tested in two cryostats: aboveground at IJCLab and Canfranc underground laboratory (LSC) in CROSS facility
- •The tests validated and showed a good bolometric performance of the assembly

- The average baseline resolution FWHM is \sim 2.3 keV for heat channels and 220 eV for light channels
- No impact of nylon wire on noise or thermal coupling
- Good discrimination between α and β/γ

The 3 pillars for background reduction

Assembly upgrade **Neganov-Luke light detectors** Active veto Use an active shield, based on ZnWO₄ or BGO scintillators Less passive materials Higher signal to noise ratio 1-lower energy threshold Reduce the Cu materials seen by the main absorber Suppress the external gamma background and reject using a LD as an active shield surface radioactivity from the crystals that face the suppress external γ background using the active shield active shield using anti-coincidence reduction of the total surface radioactivity contribution 2- reject the background induced by the random coincidences of $2\nu 2\beta$ events in LMO active shield **Compact assembly** Amplification of the tiny Cherenkov signal (TeO₂) Background reduction through anticoincidence cuts Li_2MoO_4 Or TeO_2 suppress alphas Light detector

GDR DUPhy Oct 2022 - H. KHALIFE

How does the veto work

The crystals on the periphery will be exposed directly to the veto

• If the 2615 keV γ deposit a small amount of energy in the surrounding material (~80 keV) and the rest in TeO₂ \rightarrow background in ROI

- Thanks to the active veto and the LDs, these events can be rejected:
 - The energy deposition in the active veto will lead to scintillation light detected by the LD
 - Using anti-coincidence these events can be rejected from TeO₂

2

• Some surface contamination on the crystal can be dangerous if part of the energy escapes. This can be also rejected with anti-coincidence with the veto

For this to work, we need a Neganov-Luke LD (higher signal to noise ratio) in order to achieve a low energy threshold (~50 keV in the scintillator corresponding to few keV in LD)

The 3 pillars for background reduction

Assembly upgrade **Neganov-Luke light detectors** Active veto Use an active shield, based on ZnWO₄ or BGO scintillators Less passive materials Higher signal to noise ratio 1-lower energy threshold Reduce the Cu materials seen by the main absorber Suppress the external gamma background and reject using a LD as an active shield surface radioactivity from the crystals that face the suppress external γ background using the active shield active shield using anti-coincidence reduction of the total surface radioactivity contribution 2- reject the background induced by the random coincidences of $2\nu 2\beta$ events in LMO active shield **Compact assembly** Background reduction through anticoincidence cuts Amplification of the tiny Cherenkov signal (TeO₂) Li_2MoO_4 Or TeO_2 suppress alphas Light detector

GDR DUPhy Oct 2022 - H. KHALIFE

How does Neganov-Luke LD work

Ge wafer provided with Al electrodes on its surface

When applying voltage across these electrodes an electric field is establish \downarrow The absorption of photons produces electron-hole pairs

The electric field drifts the charges and it prevents their recombination \downarrow Carriers collide with the lattice during the drift, increasing the temperature \downarrow

This means signal amplification that is read by a thermistor (NTD)

The effect

CUORE-size TeO₂ bolometer ($5 \times 5 \times 5$ cm³ as in BINGO) coupled to NL LD tested at LSM in 2017 proved the concept (PHYSICAL REVIEW C 97, 032501(R) (2018))

Neganov-Luke light detector

• Currently we are testing NL LD with different electrodes geometry in order to achieve a high amplification gain and good bolometric performances

Electrodes on 2 opposite edges

Concentric Electrodes

Double meander Electrodes

Active veto aboveground prototype test

- We have two choices for the veto: BGO or ZnWO₄
- Small crystals samples were tested to check the light yield and energy threshold
- BGO showed higher light yield, while ZnWO₄ showed better radiopurity
- BGO can be grown as long bars, while for the moment for ZnWO₄ it is not clear it can be done
- Further investigation is needed to choose the veto material

- 2 BGO crystals (~1.6kg each)
- 2 LDs facing each BGO
- TeO₂ crystal facing both BGOs

Uranium α source deposited on TeO₂ to imitate surface contamination (at 4.2 and 4.8 MeV)

Energy threshold and efficiency study

- 1000 fake pulses at different energies were injected into the data to estimated the efficiency after data processing
- The required energy threshold for the veto scintillator should be around 50 keV, which corresponds to around 3-4 keV in LD when taking into account the light yield (LY) which is around 7 keV/MeV in the current configuration and NL gain.

Hunting the α source with coincidence

The mini-BINGO ingredients

Double beta decay part

- 12 cubic Li₂MoO₄ scintillating crystals (45×45×45 mm), each is coupled to a light detector (45×45 mm)
- 12 cubic TeO₂ crystals (50×50×50 mm), each is coupled to a light detector (50×50 mm)

Cryogenic veto part surrounding the physics volume

 16 trapezoidal cross-section + 2 disc scintillators (BGO or ZnWO₄) each coupled to LDs

Mini-BINGO plan in Modane

- Mini-Bingo will be a technology demonstrator of the background reduction techniques described
- The demonstrator will be tested in Modane underground laboratory
- The cryostat will installed in spring 2023
- There will be an adopted clean room for assembly preparation
- The schedule is to start mini-bingo mid-end 2024
- In the meantime, the LMO and TeO₂ towers can be tested in the cryostat and work on the background
- The goal is to reach background level below 10⁻³ c/(keV kg y), improving the one achieved by similar scale demonstrators (CUPID-0, CUPID-Mo)
- Assuming to get zero background in a [2.5-3.5] MeV interval, comprising both ROIs, a background level down to 10⁻⁴ c/(keV kg y) is in principle testable

Conclusion and perspectives

- BINGO is a promising project towards the meV scale of the effective Majorana mass
- BINGO proposed technologies are a possible candidate for CUPID-1T
- New technology that allows to reach $b \sim 10^{-5}$ counts/(keV kg yr)
- The nylon wire assembly is almost validated
- More R&D is needed to develop the suitable Neganov-Luke LD that fulfills BINGO goals
- Some simulation and cryogenic measurements will be done to fix the scintillator to be used as a veto

Backups

Hunting the α source with coincidence

Coincidences between TeO₂ and one LD

• The marked events are alphas (with shared energy in TeO₂) in light detector

- Events in TeO₂ are rejected if an event is found in a time window of 5ms in the light detectors.
- Accidental coincidences distribution is determined with the regions in red dashed lines since it should be the same under the peak

Most harmful U/Th nuclides for 0vDBD search

	Crystal Growth		λ_{max}	$L/H_{\gamma(\beta)}$		QF _α	Section	Crystal	Growth	λ_{\max}	$L/H_{\gamma(\beta)}$		QF_{α}	Section
	-		(nm)	(keV/MeV)	(ph/MeV)					(nm)	(keV/MeV)	(ph/MeV)		
	CaWO ₄	Cz	420 (8 K) [261]	6.0-24	2000-8100	0.10-0.12	Section 3.1.1	Li ₆ Eu(BO ₃) ₃	Cz	613 (4.2 K) [363]	6.6	3200	0.08	Section 3.3.1
				$(45-52^{a})$	(15,400-17,500)		ibid.	Li ₆ Gd(BO ₃) ₃ ^b	Cz	312 (90 K) [364]	0.26	65	0.23	Section 3.3.2
	CdWO ₄ ^b	Cz, LTG Cz	420 (8 K) [261]	14-31	5400-12,000	0.18-0.19	Section 3.1.2	Al ₂ O ₃ (Ti), pure	Ve, Kv, Cz	420 (9 K) [365]	2.5-14	850-4700	0.09-0.36	Section 3.4.1
	Li ₂ WO ₄ (Mo)	Cz, LTG Cz	530 (8 K) [352]	0.40	170	0.26 ^c	Section 3.1.3	Bi4Ge3O12	Cz, LTG Cz, BS	480 (9 K) [261]	7.0-28	2700-11,000	0.17-0.18	Section 3.4.2
	Na ₂ W ₂ O ₇ PbWO ₄	LTG Cz Cz	540 (77 K) [353] 420 (4.2 K) [354]	12 1.8	5200 600	0.20 0.20	Section 3.1.4 Section 3.1.5	LiAlO ₂	Cz	340 (300 K) [366]	1.2	300	0.52	Section 3.4.3
_	ZnWO ₄	Cz, LTG Cz	490 (9 K) [261]	13-19	5100-9500	0.15-0.23	Section 3.1.6	TeO ₂ ^b	BS, Cz	500 (<15 K)	~ 0.04	~ 20	n/a	Section 3.4.4
	CaMoO ₄	Cz	540 (8 K) [261]	1.9-4.8	800-2100	0.13-0.22	Section 3.2.1	YVO4	Cz	450 (80 K) [367]	59	21.000	0.20	Section 3.4.5
	$Li_{b}M_{2}O_{4}^{b}$	DO Calterares	550 (5 K) [555] 590 (8 K) [311]	2.0	300-500	0.10	Section 3.2.2	ZrO ₂		420 (85 K) [368]	~2	\sim 700	~0.2	Section 3.4.6
	L12M0O4	CZ, LIG CZ, DS	590 (8 K) [511]	$(1.2-1.4^{d})$	(600–700)	0.17-0.25	ibid.	LiInSea	BS	730 (173 K)	14	8200	0.55	Section 3.5.1
	$Li_2Mg_2(MoO_4)_3$	LTG Cz	585 (8 K) [356]	1.3	610	0.22	Section 3.2.4	= c h	20	[265]		0_00	24.44	0
	$L_{12}Zn_2(MoO_4)_3$	LIGCz	630 (10 K) [357]	n/a	n/a	n/a	Section 3.2.5	ZnSe ^v	BS	640 (9 K) [261]	0.7-7.5	360-3900	2.6-4.6	Section 3.5.2
	MgMoO ₄	Cz LTC Cz	520 (9 K) [358]	n/a	n/a	n/a	Section 3.2.6	CaF ₂ (Eu)	Cz, BS	425 (15 K) [369]	14	4800	0.14-0.19	Section 3.6.1
	Na ₂ Mo ₂ O ₇	Cz, LIG Cz	650 (4.2 K) [359] 520 (10 K) [360]	0.58-1.6	2200-5000	0.16-0.40	Section 3.2.7	LiF ^b	Cz, BS	365 (9 K) [370]	0.21-0.38	60-110	0.30	Section 3.6.2
	SrMoO4	CZ, LIG CZ	520 (10 K) [360]	0.2-12	400-1300	~0.25	Section 3.2.9	SrF_2	Cz, BS	365 (4.2 K) [371]	2.9	850	0.26	Section 3.6.3
	ZnMoO4	Cz. LTG Cz	520 (1.4 K) [362]	1.0-1.5	400-600	0.13-0.19	Section 3.2.10	CsI	Ky, Cz, BS	340 (10 K) [264]	49-81	13.000-22.000	~ 0.5	Section 3.7.1
	2407004	CL, LIG CL	0-0 (1111) [002]	$(1.8-2.1^{d})$	(800–900)	0.10 0.17	ibid.	NaI	Ky, Cz, BS	300 (10 K) [372]	37 (130 ^a)	9000 (32,000)	$\sim 0.2 \ ^{e}$	Section 3.7.2
-									10.1.2.11.2.1		a contraction of the second			

^{*a*} An advanced light collection using a beaker-shaped light detector. ^{*b*} Including crystals produced from materials enriched in an isotope of interest. ^{*c*} Estimated for α + t events (4.8 MeV sum energy, products of neutron capture by ⁶Li). ^{*d*} An improved light collection using two identical light detectors at the crystal top and bottom. ^{*e*} Estimated for Na nuclear recoils.

Poda, D. Scintillation in Low-Temperature Particle Detectors. Physics 2021, 3, 473–535

Full α rejection down to BI < 10⁻⁵ counts/keV/kg/y is assumed