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Neutrinoless double beta decay
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Neutrinoless double-beta decay: (A, Z) → (A, Z+2) + 2e-

Its observation will:

• Ascertain the Majorana nature of  neutrino ν = ഥν
• Confirm lepton number violation

• Measure 𝑻𝟏/𝟐
𝟎𝝂 that will lead to 𝒎𝜷𝜷 measurement

BINGO objective

number of  background counts

𝑴  𝒕 ∆𝑬
𝑏 =

𝑀: detector mass

𝑡: time of  measurement

𝐵𝐼: background index

𝛥𝐸: energy resolution of  the detector (FWHM)

2

• BINGO will set the grounds for a large scale bolometric experiment searching 

for neutrinoless double-beta decay (0ν2β) using revolutionary technologies

• It aims to reduce dramatically the background in the region of  interest, which is one of  

the most limiting factors for current and future 0ν2β experiments
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Bolometric technique (Dual read-out)
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Features

• high energy resolution

• full active volume (no dead layer)

• flexible material choice (Li2MoO4, TeO2)
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Bolometric compounds’ strong and weak points

H. KHALIFE 4

Li2MoO4 TeO2

• Embeds 100Mo with a Q at 3034 keV

• This crystal was validated by the CUPID-Mo demonstrator 

◦ Excellent energy resolution

◦ High internal radio-purity

◦ Easiness in crystallization

• Fast 22 decay → background in the region of  interest 

(ROI) due to 22 random coincidences 

• Embeds 130Te with a Q at 2527 keV

• This crystal was validated by the CUORE experiment

◦ Excellent energy resolution

◦ High internal radio-purity

◦ Easiness in crystallization

• Q below the end line (at 2615 keV line of  208Tl) of  natural 

gamma radioactivity

• Very poor scintillator → no alpha background rejection

Background problems, in addition to possible surface 

contamination from surrounding materials
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The 3 pillars for background reduction
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Less passive materials

Neganov-Luke light detectorsActive veto

Reduce the Cu materials seen by the main absorber 

using a LD as an active shield 



reduction of  the total surface radioactivity contribution

Assembly upgrade

Compact assembly

Background reduction through anticoincidence cuts

Use an active shield, based on ZnWO4 or BGO scintillators



Suppress the external gamma background and reject 

surface radioactivity from the crystals that face the 

active shield using anti-coincidence

Higher signal to noise ratio

1- lower energy threshold 



suppress external γ background using the active shield

2- reject the background induced by the random

coincidences of  22 events in LMO

Amplification of  the tiny Cherenkov signal (TeO2) 



suppress alphas
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Assembly upgrade
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Surface contaminations can be 

rejected with coincidence thanks 

to the compact assembly and LD 

shielding
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New assembly test on Li2MoO4

• The assembly was tested in two cryostats: aboveground at IJCLab and Canfranc underground laboratory (LSC) in CROSS facility

•The tests validated and showed a good bolometric performance of  the assembly
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• The average baseline resolution FWHM is ~ 2.3 keV for heat channels and 220 eV for light channels

• No impact of  nylon wire on noise or thermal coupling

• Good discrimination between α and /

αs

/
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The 3 pillars for background reduction
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Less passive materials

Neganov-Luke light detectorsActive veto

Reduce the Cu materials seen by the main absorber 

using a LD as an active shield 
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reduction of  the total surface radioactivity contribution
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Compact assembly

Background reduction through anticoincidence cuts

Use an active shield, based on ZnWO4 or BGO scintillators
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Suppress the external gamma background and reject 

surface radioactivity from the crystals that face the 

active shield using anti-coincidence

Higher signal to noise ratio

1- lower energy threshold 
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suppress external γ background using the active shield

2- reject the background induced by the random
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
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How does the veto work
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The crystals on the periphery will be 

exposed directly to the veto

Compton 

scattering

bolometer

NTD



TeO2

Q=2527 keV

2615 keV 

• If  the 2615 keV γ deposit a small amount of  energy in the surrounding 

material (80 keV) and the rest in TeO2 → background in ROI 

• Thanks to the active veto and the LDs, these events can be rejected:

• The energy deposition in the active veto will lead to scintillation 

light detected by the LD

• Using anti-coincidence these events can be rejected from TeO2

1

2

• Some surface contamination on the crystal can be dangerous if  part of  

the energy escapes. This can be also rejected with anti-coincidence with 

the veto 

1

2

For this to work, we need a Neganov-Luke LD (higher signal to noise ratio) in order to 

achieve a low energy threshold (~50 keV in the scintillator corresponding to few keV in LD)
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The 3 pillars for background reduction
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Less passive materials

Neganov-Luke light detectorsActive veto

Reduce the Cu materials seen by the main absorber 

using a LD as an active shield 



reduction of  the total surface radioactivity contribution
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Amplification of  the tiny Cherenkov signal (TeO2) 


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How does Neganov-Luke LD work
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Ge wafer provided with Al electrodes on its surface



When applying voltage across these electrodes an electric field is establish



The absorption of  photons produces electron-hole pairs



The electric field drifts the charges and it prevents their recombination



Carriers collide with the lattice during the drift, increasing the temperature



This means signal amplification that is read by a thermistor (NTD) 

CUORE-size TeO2 bolometer (5×5×5 cm3 as in BINGO) coupled to NL LD tested 

at LSM in 2017 proved the concept (PHYSICAL REVIEW C 97, 032501(R) (2018))

The effect

TeO2 is a poor scintillator, and we rely 

on detecting Cherenkov light. The 

energy threshold of  electrons and 

alphas to produce Cherenkov light is 

respectively: 50 keV and 400 MeV

Amplification factor ~ 13

Alpha rejection is achieved

In addition, with NL LD we can get 

a lower energy threshold thanks to 

higher signal to noise ratio



GDR DUPhy Oct 2022 -

Neganov-Luke light detector
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• Currently we are testing NL LD with different electrodes geometry in order to achieve a high amplification 

gain and good bolometric performances

Electrodes on 2 opposite edges Concentric Electrodes Double meander Electrodes 
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Active veto aboveground prototype test
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12
cm

• 2  BGO crystals (~1.6kg each)

• 2 LDs facing each BGO

• TeO2 crystal facing both BGOs

Uranium α source deposited on TeO2 

to imitate surface contamination (at 

4.2 and 4.8 MeV)

• We have two choices for the veto: BGO or ZnWO4

• Small crystals samples were tested to check the light yield 

and energy threshold

• BGO showed higher light yield, while ZnWO4 showed better 

radiopurity

• BGO can be grown as long bars, while for the moment for 

ZnWO4 it is not clear it can be done

• Further investigation is needed to choose the veto material
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Energy threshold and efficiency study
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• 1000 fake pulses at different energies were injected into the data to estimated the efficiency after data processing

• The required energy threshold for the veto scintillator should be around 50 keV, which corresponds to around 3-4 keV in LD when 

taking into account the light yield (LY) which is around 7 keV/MeV in the current configuration and NL gain.

Needed threshold in LD 

with NL gain ×10

LD energy spectrum calibrated with muons

Corresponds to 2.6 MeV 

gamma in BGO

Energy released by photons in LD
Energy released by photons in LD
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Hunting the α source with coincidence
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BGO

TeO2

α source

α

NR + part of  

alpha energy

BGO

TeO2

α source

α

NR

TeO2 energy spectrum of  events in 

coincidence with BGO

BGO energy spectrum of  events in 

coincidence with TeO2
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The mini-BINGO ingredients 
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Double beta decay part

• 12 cubic Li2MoO4 scintillating crystals (45×45×45 mm), each is 

coupled to a light detector (45×45 mm)

• 12 cubic TeO2 crystals (50×50×50 mm), each is coupled to a light 

detector (50×50 mm)

Cryogenic veto part surrounding the physics volume

• 16 trapezoidal cross-section + 2 disc scintillators (BGO or ZnWO4) 

each coupled to LDs
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Mini-BINGO plan in Modane
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• Mini-Bingo will be a technology demonstrator of  the background reduction 

techniques described

• The demonstrator will be tested in Modane underground laboratory

• The cryostat will installed in spring 2023

• There will be an adopted clean room for assembly preparation

• The schedule is to start mini-bingo mid-end 2024

• In the meantime, the LMO and TeO2 towers can be tested in the cryostat and work 

on the background

• The goal is to reach background level below 10-3 c/(keV kg y), improving the one 

achieved by similar scale demonstrators (CUPID-0, CUPID-Mo)

• Assuming to get zero background in a [2.5-3.5] MeV interval, comprising both 

ROIs, a background level down to 10-4 c/(keV kg y) is in principle testable
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Conclusion and perspectives
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• BINGO is a promising project towards the meV scale of  the effective Majorana mass 

• BINGO proposed technologies are a possible candidate for CUPID-1T 

• New technology that allows to reach b10-5 counts/(keV kg yr)

• The nylon wire assembly is almost validated

• More R&D is needed to develop the suitable Neganov-Luke LD that fulfills BINGO goals

• Some simulation and cryogenic measurements will be done to fix the scintillator to be used as a veto



GDR DUPhy Oct 2022 -

Backups
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Hunting the α source with coincidence
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Coincidences between TeO2 and one LD

• The marked events are alphas (with shared energy in TeO2) in light 

detector

• Events in TeO2 are rejected if  an event is found in a time window of  

5ms in the light detectors.

• Accidental coincidences distribution is determined with the regions 

in red dashed lines since it should be the same under the peak

Real coincidences

Flat bkg of accidental 

coincidences
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Most harmful U/Th nuclides for 0νDBD search 
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