

Cuore Upgrade with Particle IDentification

A. Armatol GDR DuPhy 19-21 october 2022

SEARCHING FOR 0ν2β

- An hypothetical decay : $(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$
- Leads to a peak in the sum of e⁻ energy spectrum
 Violates the lepton number conservation
- Could prove the Majorana nature of the neutrino ($v = \overline{v}$)
- Gives clues about matter/antimatter asymmetry and information on mass hierarchy

An extremely rare decay : $T_{1/2}^{0\nu} > 10^{25} - 10^{26} yr$

In case of light Majorana neutrino exchange :

in the region of interest

CUORE IN A NUTSHELL

0ν2β isotope : ¹³⁰**Te** (Q_{BB} =2527 keV)

The **largest** bolometric experiment :

988 5x5x5cm crystals of TeO₂ 19 towers of 13 floors each

Total mass : 742 kg (206 kg of ¹³⁰Te)

One of the most sensitive current generation 0v2β **experiment**

Current limit with **1 ton.yr** exposure* :

T_{1/2}> 2.2x10²⁵ yr

m_{ββ}< 90-300 meV

Projected sensitivity after 5 years :

 $T_{_{1/2}} \sim 9 \times 10^{25} \text{ yr}$ $m_{_{\beta\beta}} < 60-280 \text{ meV}$

Energy resolution : 7.8(5) keV FWHM in ROI

* Nature 604, 53-58 (2022)

CUPID: Cuore Upgrade with Particle IDentification

FROM CUORE TO CUPID

But CUORE is **not background free** ! $b \sim 10^{-2}$ ckky dominated by surface α

Upgrade required to increase the sensitivity and **reach objectives of next generation experiments** !

Important messages from CUORE :

Bolometric ton scale experiments are possible
 CUORE cryostat is suitable to host a next generation experiment like CUPID

Objective : reduce by a factor 100 the background and reach $b \sim 10^{-4}$ ckky with CUPID

To reject the α background \rightarrow Use **scintillating bolometers** and a heat/light dual readout

To mitigate the γ background \rightarrow **Change of isotope**, from ¹³⁰Te to ¹⁰⁰**Mo** which has a Q-value > 2.615 MeV (Q_{BB}=3034 keV)

BOLOMETRIC TECHNIQUE

Dual readout :

Two signals per event

α-event discrimination (>99% in the ROI)

Ideal for 0v2β search :

Detector=Source approach \rightarrow High efficency (~ 80 - 90 %)

Excellent energy resolution (down to \sim 5 keV in the ROI)

Large masses achievable using arrays of crystals

Large flexibility for the absorber material choice

ISOTOPE AND CRYSTAL CHOICE

First demonstrator using scintillating bolometers : CUPID-0 in LNGS

24 Zn⁸²Se crystals ($Q_{\beta\beta}$ =2998 keV) with 95 % enrichement in ⁸²Se 31 Ge light detectors Total mass : 5.17 kg of ⁸²Se Excellent α rejection Best limit on ⁸²Se 0v2 β

Phys. Rev. Lett. 129, 111801

BUT not the best choice for CUPID : High internal contamination of the crystal + not an excellent energy resolution (~23 keV FWHM)

The choice for CUPID : CUPID-Mo in LSM

20 Li¹⁰⁰MoO₄ crystals (Q_{ββ}=3034 keV) with 95 % enrichement in ¹⁰⁰Mo 20 Ge light detectors Total mass : 2.34 kg of ¹⁰⁰Mo 1.47 kgxyr exposure **Full α rejection** (>99%) Best limit on ¹⁰⁰Mo 0v2β : T_{1/2} > 1.8x10²⁴ yr* **Excellent energy resolution** : 7.4 keV FWHM **Radiopure crystals** : U/Th \leq 1 µBq/kg

PTFE Camposition Si Heater LMO NTD Cu Holder

CUPID BASELINE DESIGN

-Use of the CUORE cryostat at LNGS (available in \sim 2024)

- 1596 45x45x45mm³ Li₂¹⁰⁰MoO₄ crystals of ~280g each

Arranged in 57 towers of 14 floors

 Total mass : 450 kg with

 240 kg of ¹⁰⁰Mo thanks to a >95% enrichment

opper structure

CUORE CRYOSTAT

- **Ge light detectors** with SiO antireflective coating (each crystal has top and bottom LD)
- Muon veto for muon induced background suppression

CUPID: Cuore Upgrade with Particle IDentification

RECENT RESULTS AND R&D

Optimization of the first CUPID detector module

- Validation of the LD quasi-square shape and of the way to hold them + discarding of the gravity assisted configuraton for LDs.

- First step towards the first tower....

RECENT RESULTS AND R&D

The CUPID Baseline Design Prototype Tower (BDPT)

- 14 baseline modules stacked in a tower
- 28 LMO crystals from different origins :
 - 6 new naturals from BINGO
 - 8 enriched from CROSS
 - 6 naturals from a chinese provider
 - 8 naturals already tested in LNGS
 - 30 Ge light detectors

Easy to assemble :

CUPID: Cuore Upgrade with Particle IDentification

RECENT RESULTS AND R&D

The CUPID Baseline Design Prototype Tower (BDPT)

Allows to test several things :

- Different glue for the NTDs tested :
- Araldite rapid

- Araldite slow

- UV glue

20/10/22

- Test the **behaviour at low temperature** (temperature gradient, cooling down...)

- Performance homogeneity between floors

10

All the gluing of the detectors done in Orsay at IJCLab + 2 modules of 4 LDs were tested upstream in our cryostat and have obtained promising results !

Analysis of the measurements ongoing, and results under review of the collaboration. It should be soon presented !!

CUPID: Cuore Upgrade with Particle IDentification

CUPID PROJECTED BACKGROUND

Projected background index : **b=1x10**⁻⁴ **ckky**

Robust background model built with CUORE, CUPID-0 and CUPID-Mo

CUPID: Cuore Upgrade with Particle IDentification

11

CUPID DISCOVERY SENSITIVITY

With **5 keV FWHM** in ROI+ **b~10⁻⁴ ccky** + **10 years** livetime : Half-life 3σ discovery sensitivity $T_{1/2} > 1x10^{27} yr \rightarrow m_{\beta\beta} < 12-20 meV$

Exploration of the inverted hierarchy region !

CUPID: Cuore Upgrade with Particle IDentification

CONCLUSION

- CUPID aims to be **one of the most sensitive next generation 0\nu2\beta experiment** and explore the inverted ordering region.

- The cryogenic structure already exists and shows excellent performance.

- The **required performance of the single module** composed of Li_2MoO_4 crystals **is demonstrated** (α rejection, radiopurity, energy resolution).

- The test of the first tower is ongoing and results will be soon presented.

- A **robust background model** shows $b \sim 10^{-4}$ ckky as reachable.

Phased approach :

BACK UP SLIDES

CUPID: Cuore Upgrade with Particle IDentification

BDPT : LDs GLUING

A mask was 3D printed to respect the positions of the heater and the NTD (especially the distance of 1.2 mm maximum to the edge).

NTD 41b (3x0.5x1 mm³, ~5.5 mg) :

- 3 spots of rapid analdite ($\emptyset \sim 0.55$ mm) done with a gluing tool composed of three aligned pogopins.

- The NTD was then placed on the spots by hand without any 50 μm spacer.

- After having cleaned the pins, they were used to press on the NTD during the drying (\sim 1H30).

CUPID: Cuore Upgrade with Particle IDentification

BDPT : LMO GLUING

Gluing tool and procedure

NTD 41b 3x3x1 mm³

- The NTD is carefully placed on a small hole and sucked by a pump to prevent it to move.

- The circular surface is adjustable to make sure that the NTD is 0.05 mm away from the edges.

- Glue spots are made on the NTD using this gluing machine on which a pogo pins matrix is attached.

- The amount of glue is controlled by dipping the pins in a known depth of glue.

- Finally the crystal is « deposited » on the NTD using this teflon piece allowing to slowly go down.

- It allows also to have the NTD at the right position on the crystal surface.

BDPT : LMO GLUING

Gluing methods

- One procedure to make the spots per type of glue to adapt to the viscosity and to the time needed to dry.

Araldite rapid 3x3 pogo pins matrix

Pump turned off after 6 min

Spots evolve and become bigger Average spots diameter = 0.8 mm

Time on the tool : ~20 min

Araldite 2011 3x3 pogo pins matrix

We can not stop the pump since the spots would evolve too much and almost make a veil.

Spots kept like that

Time on the tool : ~8 h

UV glue 3x1 pins matrix

The glue is too liquid to make separate spots

Average mass of glue deposited = 0.22 mg

It becomes a veil once the crystal is put on

Then we flash it during 10s using a powerful UV lamp

Time on the tool : ~5 min

A glue sample has also been prepared for radioactivity measurement