

nEXO, search for $0\nu\beta\beta$ beyond 10²⁸ years

Deep Underground Physics

Julien Masbou on behalf of the nEXO Collaboration Subatech – Université de Nantes

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022¹

Ονββ **decay**

- Finding 0νββ always implies new physics
 - Lepton number violation
 - Neutrinos are Majorana fermions ($\nu \equiv \overline{\nu}$)
 - Origin of neutrino masses
 - Insight into absolute neutrino mass scale
 - Possibly linked to matter and anti-matter asymmetry
- Experimental signature is a peak at the Q-value (2458 keV for ¹³⁶Xe)

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022²

nEXO: A world wide effort

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022³

nEXO in the *0vββ* decay landscape

- The global 0vββ decay program is gearing up for the so-called "tonne-scale" phase (as communicated by the European and North American funding agencies at the 10/2021 International Forum at LNGS)
- Three major experiments with different isotopes:
 - nEXO (¹³⁶Xe), Legend-1000 (⁷⁶Ge), CUPID (¹⁰⁰Mo)
 - very different experimental techniques, healthy program
- nEXO plans a 5-tonne, single phase, LXe TPC (90% enriched in 136 isotope) 100-fold increase in sensitivity wrt current experiments
- nEXO builds on the successful EXO-200 program which has demonstrated the key technical features of this technology at scale, such as:
 - Effectiveness of self-shielding and low intrinsic background
 - Energy resolution via collection of ionization and scintillation
 - Event topology (β vs. γ) and particle ID (β/γ vs. α)
 - Continuous purification of the source

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁴

EXO-200 TPC

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁵

$T_{1/2} = (2.165 \pm 0.016(stat) \pm 0.059(syst))x10^{21} yr$

(longest, first to be precisely* (directly) measured 2vββ decay of all 'practical' isotopes) (* Ge-76 and Te-130 have similarly precise measurements)

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁶

Key requirement: shielding from MeV γ-rays

Shielding ββ decay detectors from external electromagnetic background is harder/different than shielding Dark Matter detectors

We are entering the "golden era" of $\beta\beta$ decay experiments as detector sizes exceed gamma-ray interaction lengths

E.g: the γ-ray interaction length in Ge is4.6 cm, comparable to the size of a germanium detector

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁷

Monolithic, self-shielding & homogeneous detector

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁸

Overview of the nEXO Detector

nEXO pre-conceptual Design Report arXiv:1805.11142

- Double-walled, vacuum-insulated carbon composite cryostat
- Refrigeration via 32 tonnes of Hydro-fluoro ether (HFE) 3M Novec-7000
- Design proven with EXO-200
- HFE-7000 intrinsically ultra radio-pure
- Excellent temperature stability (~165K)
- Thermal storage in case of power loss
- Lightweight, ultra-low background Xe vessel (pressure set at the Inner Cryostat)
- Active water-Cherenkov muon veto

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁹

Conceptual layout at SNOLAB (preferred site)

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022^o

Detection in nEXO's TPC

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 20221

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022²

 Photons are immediately detected by the SiPMs around the barrel and provide a time stamp lonizing

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022³

- Photons are immediately detected by the SiPMs around the barrel and provide a time stamp lonizing
- Electrons are drifted to charge collection tiles at the top

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 20224

- Photons are immediately detected by the SiPMs around the barrel and provide a time stamp lonizing
- Electrons are drifted to charge collection tiles at the top
- Charge collection tiles with 3mm pitch strips detect e-

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁵

Detection in nEXO's TPC

• Ionizing radiation will either ionize or excite Xe atoms

- Photons are immediately detected by the SiPMs around the barrel and provide a time stamp lonizing
- Electrons are drifted to charge collection tiles at the top
- Charge collection tiles with 3mm pitch strips detect e-
- Ονββ charge is mostly spatially contained (unlike γ's)

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁶

Multidimensional Event Analysis

nEXO Sensitivity and Discovery Potential: J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁷

Background model

- Bottom-up estimate of background budget through extensive screening of all detector materials
- In-house electro-formed copper for some TPC components to significantly reduce intrinsic radioactivity from ²³⁸U and ²³²Th
- Ongoing R&D looking into further reduction of ²²²Rn
- Cosmogenically produced ¹³⁷Xe can be vetoed with at least 70 % efficiency and negligible lifetime loss

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁸

nEXO sensitivity and discovery potencial

Increase by **two orders of magnitude** in half-life sensitivity over current generation experiments!

Half-life of $0\nu\beta\beta$ in ¹³⁶Xe [yr]

- >10²⁸ year sensitivity reach in 10 years
- Can provide compelling evidence of 0vββ decay discovery
- Probes $m_{\beta\beta}$ ~ 15 meV (model and NME dependent)

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 20229

- Point design (=1)
 - o ²²²Rn: 600 atoms in steady state (EXO-200 has ~200)
 - o ¹³⁷Xe: 0.85x10⁻³ atoms/kg/year
- Good data/MC agreement was demonstrated with EXO-200
- nEXO sensitivity is robust against background mis-estimations

Sensitivity – tonnes scale *0νββ*

- nEXO sensitivity results from a powerful combination of energy resolution, event topology, and self-shielding. Multi-parameter analysis also makes the measurement robust against any currently unknown backgrounds.
- Since there is no internal passive materials, any unknown gamma lines give a very clear reading in the multi-site channel.

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022¹

Neutrino mass sensitivity

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022²

Outlook

- nEXO utilizes a tonne-scale LXe TPC to search for $0\nu\beta\beta$ in 136 Xe
 - \circ $\;$ Low intrinsic and well-understood background
 - Good energy resolution
 - Powerful background discrimination using multi-variate analysis
 - Robust background model, powerful background discrimination
 - Capability for running a control experiment with natXe
 - Benefits from and contributes to rapid evolution of LXe technology
- nEXO will explore beyond the current 0nbb decay sensitivity 100-fold
 - Are neutrinos their own antiparticles?
 - Origin of neutrino mass
 - Matter/antimatter asymmetry

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 202233

The nEXO detector: an evolution from EXO-200

TPC HFE 7000 LXe SiPMs Cryostat OV Vacuum Cryostat IV Cathode

5000 kg of 90%-enriched LXe Single 120 cm dri volume; 130 cm diameter Drift E- Field ~400 V/cm Ionization electrons collected on charge detectors at the anode (no gain), ~6,000

VUV (178 nm) scintillation light is detected by a large array of SiPMs (~45,000 devices, ~4.5 m2)

channels

		EXO-200:	nEXO:	Improvements:
	Vessel and cryostat	Thin-walled commercia Cu w/HFE	Thin-walled electroformed Cu w/H E	Lower background
	High voltage	Max voltage: 25 kV (end-of-run)	Operating voltage: 50 kV	Full scale parts tested in LXe prior to installation to minimize risk
	Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D identified 10x lower bkg substrate and demonstrated digital signal transmission
	e- lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surface to volume ratio, detailed materials screening program
	Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collection with tiles in LXe, detailed simulation developed
	Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors
	Energy resolution	1.2%	1.2% (req.) 0.8% (goal)	Improved resolution due to SiPMs (negligible readout noise in light channels)
	Electronics	Conventional room temp.	In LXe ASIC-based design	Minimize readout noise for light and charge channels, nEXO prototypes demonstrated in R&D and follow from LAr TPC lineage
	Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200
	Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas and more fully contained Comptons

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 20225

Background model

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁶

Detection in nEXO's TPC

- Simulated $0\nu\beta\beta$ signal strength at $T_{1/2} = 0.74 \times 10^{28}$ yr
- Possible to run control experiment with depleted xenon to confirm discovery!

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁷

Sensitivity – tonnes scale *0νββ*

NMEs values don't follow a statistical distribution. Only a single value is true. However, calculations are difficult and have large uncertainties

Julien Masbou, Joint IRN Terascale - GDR DUPhy, Nantes, 20th October 2022⁸