Neutrinos Searches in XENON Dark Matter Experiments

Yajing Xing yajing.xing@subatech.in2p3.fr

WHY are we searching for neutrinos? 0νββ? New Physics

HOW does the XENON project detect it?

Low-background LXe TPC

WHAT are the possibilities? XENON1T, XENONnT, DARWIN

MORE neutrino searches? Solar and Supernova neutrinos

WHY are we searching for neutrinos? $0\nu\beta\beta$? New Physics

HOW does the XENON project detect it? Low-background LXe TPC

WHAT are the possibilities? XENON1T, XENONnT, DARWIN

MORE neutrino searches? Solar and Supernova neutrinos

Neutrinos in the SM... and beyond?

Nature's Ghost Particles Massless fermions in SM

→ BSM: Neutrino Oscillation
→ Neutrinos are massive

Unknown properties of the neutrino:

- What is the nature of neutrinos?
 - Majorana or Dirac particles
- Is there CP violation?
 - Matter/anti-matter asymmetry
- Masses ordering and absolute value?
 - Inverted or Normal hierarchy
 - Lepton number
- How do neutrinos get their masses?

Neutrinoless double beta decay ($0\nu\beta\beta$) is a promising probe to answer some of those questions.

3

What is double beta decay?

W. Furry (1939)

M. Goeppert-Mayer (1935)

Very rare nuclear transition

- 2nd order weak process in the SM
- Only possible for even-even nuclei, with forbidden single-β decay.

Neutrinoless Double Beta decay ($0\nu\beta\beta$):

- Light massive Majorana neutrinos
- Lepton number violation → BSM Physics

*Alternative decay mode $2\nu ECEC: (A, Z) + 2e^- \rightarrow (A, Z - 2) + 2\nu_e$

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-1}$

 $(A, Z) \to (A, Z+2) + 2e^{-} + 2\bar{\nu}_{e}$

Yajing Xing | GDR DUPhy | 20th October 2022

What are we looking for?

The signal is an elusive peak @ Q_{BB}

over an almost flat background 2vBB 0vBB Overscaled 0νββ Arbitrary unit .0 .0 2νββ 0.8 1.1 0⁺0 0.5 $(E_{e1} + E_{e2})/Q_{\beta\beta}$

The experimentally relevant candidates ¹⁰⁰Mo, ¹³⁶Xe, ⁷⁶Ge, ¹³⁰Te, ⁸²Se

- High Q-value ~2-3 MeV (above most of background)
- High isotopic abundance and/or possibility of isotopic enrichment

Rare events never observed with $T_{1/2}^{0
u\beta\beta} > 10^{24} - 10^{26} yr$

Rare events search

→ Low background experiments

5

WHY are we searching for neutrinos? 0νββ? New Physics

HOW does the XENON project detect it?

Low-background LXe TPC

WHAT are the possibilities? XENON1T, XENONnT, DARWIN

MORE neutrino searches? Solar and Supernova neutrinos

Located in the Gran Sasso laboratories **XENON Dark Matter Project** Underground Laboratory 1500 m overburden (3600 m.w.e) University o CHICAGO 180 scientists 前年大学 **27** institutions UC San Diego \rm 😓 東京大学 **11** countries KOBE 5 PURDU Subated LPNHE INFN INFN X e xenon100Xe XENON1T Xe xenon10 2005 15 kg 62 kg 2.0 t 5.9 t *40 t Active mass oiecti **Sensitivity** 0.2 ~1000 5.3 *0.04 [t.day.keV]⁻¹ Background Improvements (0) *~10-49 [cm²] ~10-44 ~10-45 ~10-47 *~10-48 Sensitivity

Dark matter direct detection experiments

Combination of **S1** and **S2** signals allows for:

- 3D Position reconstruction
- Energy reconstruction
- ER/NR discrimination through S1/S2 ratio

🖗 Ονββ experimental requirements/

¹³⁶Xe candidate Isotope: natural abundance of 8.9%

Exposure: 1 t • yr (XENON1T) 20 t • yr (XENONnT)

Resolution @ ¹³⁶Xe $Q_{\beta\beta}$ = 2457.8 keV

9

From low to high energy analysis

High Energies of O(MeV) in a detector optimized for DM energies with O(keV)

- → Dedicated correction needed against saturation effects in photosensors and digitisers
- $\sigma_{\rm E}/E$ = 0.8 % at ${\rm Q}_{\beta\beta}$ in XENON1T
- competitive with dedicated experiments like EXO
- Already confirmed and improved by LZ reaching 0.6 %.

REFERENCES EPJC 80:785 (2020) | ARXIV:2003.03825

WHY are we searching for neutrinos? 0νββ? New Physics

HOW does the XENON project detect it? Low-background LXe TPC

WHAT are the possibilities? XENON1T, XENONnT, DARWIN

NORE neutrino searches? Solar and Supernova neutrinos

0νββ Analysis Result in XENON1T

Decay of ²¹⁴Bi in the non instrumented LXe volume leads to additional y-ray background

11

Detector material y-rays whose main source of background originate from ²¹⁴Bi y @ 2.45 MeV Science data **blinded** between 2300 and 2600 keV ($\pm 3\sigma @ Q_{\beta\beta}$).

SS in 741 kg optimal fiducial volume.

Background components according to expectation (MC simulation studies).

Acceptance of 85.2 % at $Q_{\beta\beta}$.

Lower limit at 90 % CL from profiled likelihood ratio:

$$T_{1/2}^{0\nu\beta\beta} > 1.2 \times 10^{24} \,\mathrm{yr}$$

Most stringent limit to date by a non-enriched dark matter detector

$0\nu\beta\beta$ Sensitivity projection for XENONnT

- Same analysis region and method as in XENON1T.
- **91.0 % SS efficiency** for $0\nu\beta\beta$ signals.
- 1124 kg optimal fiducial volume.
- Also consider radiogenic and cosmogenic
 ¹³⁷Xe as well as ⁸B solar neutrinos-electrons scattering due to overall lower background.
- Projected sensitivity at 90% CL:

$$T_{1/2}^{0
u\beta\beta} > 2.1 \times 10^{25} \,\mathrm{yr}$$

12

OVBB Sensitivity projection for XENONnT

Not competitive with dedicated experiments due to:

- Non-enriched target.
- Background optimization for DM searches (SS Cryostat).

Result demonstrates feasibility in future Xe DM experiments

Ονββ Sensitivity projection for XENONnT | DARWIN

Not competitive with dedicated experiments due to:

- Non-enriched target.
- Background optimization for DM searches (SS Cryostat).

Result demonstrates feasibility in future Xe DM experiments

DARWIN approaches sensitivity of the future tonne-scale $0\nu\beta\beta$ experiments while being dedicated to DM search.

WHY are we searching for neutrinos? 0νββ? New Physics

HOW does the XENON project detect it? Low-background LXe TPC

WHAT are the possibilities? XENON1T, XENONnT, DARWIN

MORE neutrino searches? Solar and Supernova neutrinos

XENONnT WIMP background projection

JCAP 11 (2020) 031

14 Yajing Xing | GDR DUPhy | 20th October 2022

From low to very low energy analysis

Analysis challenge:

Expected spectrum is at very low energies Improvements in energy threshold required

- Coincidence requirement for S1s from three photons to two
- Lower energy threshold for ⁸B CEvNS from 2.6keV to 1.6keV

B CEvNS interaction

XENON1T Result:

No positive detection of CEvNS signal in XENON1T:

• Use lowered threshold to set improved lowmass WIMP limits down to **3 GeV/c2**.

First observation of CEvNS events from ⁸B solar neutrinos is **highly expected** with **XENONnT**.

Next generation perspectives:

- Precise measurement of the neutral current component of the solar 8B neutrino flux.
- He proton (Hep) branch, Diffuse supernova, and Atmospheric neutrinos will be no longer negligible.

Supernova Neutrino

PHYSICAL REVIEW D covering particles, fields, gravitation, and cosmology				Phys.Rev.D 94 (2016) 10, 103009				
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About

Supernova neutrino physics with xenon dark matter detectors: A timely perspective

Rafael F. Lang, Christopher McCabe, Shayne Reichard, Marco Selvi, and Irene Tamborra Phys. Rev. D **94**, 103009 – Published 23 November 2016

Solar ν -e⁻ elastic scattering

Open Access

Yajing Xing | GDR DUPhy | 20th October 2022

17

Eur. Phys. J. C (2020) 80: 1133 https://doi.org/10.1140/epjc/s10052-020-08602-7

Regular Article - Experimental Physics

EPJC 80:1133 (2020)

Solar neutrino detection sensitivity in DARWIN via electron scattering

DARWIN Collaboration, J. Aalbers¹, F. Agostini², S. E. M. Ahmed Maouloud³, M. Alfonsi⁴, L. Althueser⁵, F. D. Amaro⁶, J. Angevaare⁷, V. C. Antochi¹, B. Antunovic⁸, E. Aprile⁹, L. Arazi¹⁰, F. Arneodo¹¹, M. Balzer¹², L. Baudis¹³, D. Baur¹⁴, M. L. Benabderrahmane¹¹, Y. Biondi¹³, A. Bismark^{13,14}, C. Bourgeois¹⁵, A. Breskin¹⁰, P. A. Breur⁷, A. Brown¹³, E. Brown¹⁶, S. Brünner⁷, G. Bruno¹¹, R. Budnik¹⁰, C. Capelli¹³, J. Cardoso⁶, D. Cichon¹⁷, M. Clark¹⁸, A. P. Colijn⁷, J. Conrad¹, J. J. Cuenca-García¹⁹, J. P. Cussonneau²⁰, M. P. Decowski⁷, A. Depoian¹⁸, J. Dierle¹⁴, P. Di Gangi², A. Di Giovanni¹¹, S. Diglio²⁰, D. Douillet¹⁵, G. Drexlin²¹, K. Eitel¹⁹, R. Engel¹⁹, E. Erdal¹⁰, A. D. Ferella^{22,23}, H. Fischer¹⁴, F. Fischer²⁴, W. Fulgione²⁵, P. Gaemers⁷, M. Galloway¹³, F. Gao⁹, D. Giovagnoli²⁰, F. Girard¹³, R. Glade-Beucke¹⁴, F. Glück¹⁹, L. Grandi²⁶, S. Grohmann²⁷, R. Größle¹⁹, R. Gumbsheimer¹⁹, V. Hannen⁵, S.

Precise measurements of electronic solar neutrino survival probability and electroweak mixing angle using pp neutrino

Flavor blinded measurement of neutrino flux through CEvNS events for the community.

XENONnT & DARWIN

 Contribution to the upgraded SuperNova Early Warning System (SNEWS-2.0) with XENONnT and DARWIN.

More Science Channels than "just" DM

WIMPS Spin-independent PRL 119, 181301 PRL 121, 111302 Spin-dependent

Yajing Xing | GDR DUPhy | 21th October 2022

18

PRL 122, 141301 Sub-GeV PRL 122, 071301 PRD 103, 063028

Towards LXe Observatory

Solar ⁸B CEvNS PRL 126, 091301

NR

Light DM PRL 123, 241803 PRL 123, 251801 2vECEC capture Nature 568, 532 PRC 106, 024328

Bosonic DM

PRL 123, 251801 (low mass PRD 102, 072004 (2020) arxiv 2207.11330 (2022)

0νββ decay PRC 106, 024328

Neutrino magnetic moment PRD 102, 072004 (2020) arxiv 2207.11330 (2022)

ER

Solar axions PRD 102, 072004 (2020) arxiv 2207.11330 (2022)

Merger of leading collaborations for a future DARWIN/G3 Xenonbased experiment xlzd.org

CONCLUSION

- The XENON project already demonstrated its world leading result in WIMP direct detection.
- ¹³⁶Xe 0vbb search feasible, despite material background
- Broadening of the physics program towards neutrino physics with the current and next generation of detector (0νββ, CEvNS, solar neutrinos, etc).

xenonexperiment.org

xenon_experiment

xenonexperiment

