Rare event searches with LiquidO technology

Diana Navas Nicolás On behalf of the LiquidO consortium

Laboratoire de Physique des 2 Infinis 20-October-2022

Some remarks to begin with ...

Neutrinos are rare events in this talk

 This presentation is not focused on other rare events (double beta, proton decay, dark matter ...)

 ... but its goal is to highlight the possible benefits of the LiquidO technology in the context of Deep Underground Physics, such as the extra handles for the control of cosmogenics

Outline

- What is LiquidO?
- Physics potential
- Experimental validationFuture prospects and conclusions

Outline

- What is LiquidO?
- Physics potential
- Experimental validationFuture prospects and conclusions

A NEW APPROACH

Stochastic light confinement near its creation point by using opaque medium

Transparent: Today's technology Topology information washed-out Opaque: LiquidO technology Light clustering

INNOVATIVE DETECTION TECHNIQUE

- Maximal light collection by a dense array of fibers connected to SiPMs
- ★ Low background, high efficiency
- ★ Fast time resolution (< 0.1 ns)
 - **Excellent spatial resolution** (\leq 1 mm)

Top view: (x,y) projection

Bottom view: (x,y) projection

20/10/22 GDR - Duphy

6

NOVEL ENGINEERING SOLUTIONS

- ★ 1x Axis(Z) low cost & simplicity
- ★ (X,Y): topology \rightarrow mm resolution (robust)
- C: timing → few cm resolution

- ★ "1x" Axis(twisted-Z @ \leq 10°) development
- ★ (X,Y): topology \rightarrow mm resolution (robust)
- ★ Z: topology \rightarrow ≤1cm resolution (robust)
- ★ (X,Y,Z): timing \rightarrow over-constrain & energy-flow

OPAQUE MEDIUM

NoWaSH [prototype]

- ★ Opaque Liquid Scintillator
- ★ Linear Alkyl Benzene (~80 wt.%) + Paraffin Wax (~20 wt.%) + PPO (~0.3%)

8

- ★ Opacity depends on paraffin concentration (changes crystalisation temperature)
- ★ Short scattering length and moderate absorption length
 - arXiv:1908.03334

LiquidO R&D extensive field: new μ Crystal scintillators arXiv:1807.00628, emulsion...

Rare event searches with LiquidO technology

UNPRECEDENTED IMAGING CAPABILITIES

ENERGY DEPOSITION 1 MEV C+

- ★ Particle Identification (PID) is a major challenge in MeV neutrino detection.
- ★ Confinement of light into sphere around each ionization point
- A self-segmented detector!
 (no need to introduce dead material for segmentation)
- ★ Discrimination of individual e^+ , e^- and γ events @1MeV

UNPRECEDENTED PID @MEV SCALE

$\star v_e/\overline{v}_e$ separation

- Background (cosmogenic)
 identification
- No segmentation (less background for MeV physics)

20/10/22

GDR - Duphy

- ★ Topology of deposited energy
- ★ "Energy flow": time pattern for the light to be collected
- Able to achieve e⁻ separation from γ with efficiency > 85% and contamination ~10⁻³ @2MeV

Rare event searches with LiquidO technology

POWERFUL BACKGROUND REJECTION

Signal : Background ~ 30 : 1Signal : Background $\gtrsim 10 \times 30 : 1$ Background: few/dayBackground: few/year

PID + vertex reconstruction

POSSIBILITY OF DOPING

- ★ Relaxing scintillator transparency requirement
- ★ Unparalleled affinity for loading
- ★ Plenty of room to explore unconventional scintillators (e.g. ultra high light-yield)

20/10/22 GDR - Duphy

Rare event searches with LiquidO technology

Outline

- What is LiquidO?Physics potential
- Experimental validationFuture prospects and conclusions

SOLAR NEUTRINOS

Indium loading will allow to perform precise pp solar neutrino physics and beyond

$$v_{e} + {}^{115}\text{In} \rightarrow {}^{115}\text{Sn} + e^{-} \text{ (LENS)} \text{ delay}$$

$$\tau = 4,76 \,\mu\text{s} \left[\begin{array}{c} e_{1}^{-}/\gamma_{1} & \text{E} = 116 \,\text{keV} \, (e/\gamma) = 0.96 \\ + \\ \gamma_{2} & \text{E} = 497 \,\text{keV} \end{array} \right]$$

Delay $\begin{bmatrix} \overline{0} \\ 0 \\ -50 \\ -50 \\ 1 \\ 10 \\ 10 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -50 \\ 1 \\ 10 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -50 \\ 0 \\ -50 \\ 1 \\ -50 \\ -50 \\ 0 \\ -50 \\ -50 \\ -50 \\ -50 \\ -50 \\ 0 \\ -50 \\ -50 \\ 0 \\ -50 \\ -50 \\ -50 \\ 0 \\ -50$

THREE-FOLD COINCIDENCE BG-less ($\lesssim 10^{-15}$ g/g) Low threshold = 114 keV (95.5% of pp v_e)

 $E_{vis}=E_{\nu}-\text{threshold}$

20/10/22 GDR - Duphy

Rare event searches with LiquidO technology

FROM MEV TO MULTIMEV

- ★ Powerful PID
- ★ Energy Flow
- ★ Tracking (mm)
- ★ Directionality
- ★ dE/dx (range)

FROM MEV TO MULTIMEV

FROM MULTIMEV TO GEV

NUCLEON DECAY

- ★ Largest achievable free protons densitiy (scintillator)
- ★ Very high-efficiency
- ★ Full topological information and sign-ID for some channels through final Michel-e⁻ (magnetize det)

NEUTRINOLESS DOUBLE BETA DECAY

- ★ Key advantages: background control and ability to load well beyond current limits
- ★ Looks like a very promising path for reaching deep into the normal ordering region!

SUPERNOVA NEUTRINOS, ⁴⁰K GEONEUTRINOS, REACTOR ANTINEUTRINOS...

Outline

- What is LiquidO?
- Physics potential
- Experimental validationFuture prospects and conclusions

MICRO-LIQUIDO: FIRST EXPERIMENTAL PROOF OF PRINCIPLE

Article | Open Access | Published: 21 December 2021

Neutrino physics with an opaque detector

LiquidO Consortium

<u>Communications Physics</u> **4**, Article number: 273 (2021) | <u>Cite this article</u> **2530** Accesses | **3** Citations | **23** Altmetric | <u>Metrics</u>

More light collected by the fibres near the light source with the opaque sample!

MINI-II (UPGRADE): LIQUIDO'S PROTOTYPE DATA TAKING SINCE 2021

- \star ~10 L with 64 readout fibres including a 3" PMT
- ★ e- from monoenergetic beam (⁹⁰Sr) [0.4-1.8 MeV]
- ★ Stochastic light confinement observation
- ★ T cycle [5,40]°C powerful T control system (Chiller)
- ★ Very fast electronics: fast low-power custom preamplifier with sub-ns rise time
- ★ 64-channel WaveCatcher system for waveform digitization (ps time resolution)

WATER: SINGLE e CHERENKOV ONLY

Low amount of light: Cherenkov only & transparent (LiquidO's lowest acceptance)

Validation detector's integral timing readout

LAB: CHERENKOV \oplus Scintillation

~8.7x more light due to LAB's scintillation [no PPO]

Cherenkov excites the scintillator — loss ≥50% (optimisation)

Normalised Response (A.U.)

Rare event searches with LiquidO technology

1.8 MeV e

- 1.6 MeV e

— 1.4 MeV e — 1.2 MeV e

- 1.0 MeV e

- 0.8 MeV e

0.6 MeV e

LAB (no PPO)

250

300

Time (ns)

transparent

200

150

50

100

Experimental validation

TRANSPARENT LS: CHERENKOV VS SCINTILLATION

★ Transparent liquid scintillator (LS)

Remarkable separation using only timing
 Cherenkov light production threshold

22

NW at 40°C "Transparent" — effectively like LAB or Water Cherenkov reduced by paraffine? — under investigation

NW@5°C: CHERENKOV ⊕ SCINTILLATION

~2x more light due to LiquidO's aggressive scattering

Faster collection and better light containment

Formation topology → stochastic light confinement → LiquidO

OPACITY DEMONSTRATION

LIGHT YIELD EXPLORATION

~80% light collected within 5 cm's

Effective detected light yield >120PE/MeV [@ SiPM]

≥250PE/MeV — optimisation (ongoing engineering)

Rare event searches with LiquidO technology

TOPOLOGY PID (NO TIMING)

PID e/ γ should be \geq 100:1 rejection @ \geq 90%

Outline

- What is LiquidO?
- Physics potential
- Experimental validation
- Future prospects and conclusions

Future prospects

PROJECTS SEQUENCE AND TIMELINE

MINI- γ project

vAM-Otech project Applied & Innovation R&D

UK Research and Innovation

~ 5 tons 2022-2027 + LPET-Otech project (medical approach) 2022-2024 ANR funded

20/10/22 GDR - Duphy

Rare event searches with LiquidO technology

29

Future prospects SUPER CHOOZ PROJECT

CNIS

Chooz-B: Reactor Cores

Chooz-A: Cavern Reactor Core

Ultra Near Detectors-

•LiquidO technology •Mass: ≤5ton

•Overburden: ≤3m

•Baseline: ≤30m

Chooz-A: Super Far Detector

LiquidO technology
Mass: ~ I Okton

•Overburden: ≤100m

•Baseline: ~I km

the Meuse river

 \leq 10 ktons

≥2030

LiquidO consortium

LiquidO consortium consists of more than 70 scientists in 22 academic institutions (universities and/or laboratories) in over 10 countries

LiquidO@IN2P3: CPPM, IJCLab, IPHC, LNCA, LP2IB, Subatech (6 laboratories)

More info https://liquido.ijclab.in2p3.fr

20/10/22 GDR - Duphy

Rare event searches with LiquidO technology

Conclusions

- LiquidO is a novel detector concept \rightarrow opaque LS
 - Light confiment close to its creationpoint by a short scattering length
 - Light collection by a dense grid of wavelength shifting fibers + SiPMs
- LiquidO enables highly efficient PID
 - Event-by-event topological discrimination power
 - Powerful background discrimination
- Possibility of loading dopants at high concentrations
- Extensive and exciting physics potential (solar, reactor, SN, geoneutrinos...)
- Experimental validation of light confinement (MINI-II prototype)
- Future projects under development!

Thank you!

Back-up

- 1-cm-pitch lattice running along the z-axis
- Probability of misidentifying a γ as an e⁻ vs. the efficiency of selecting e⁻
- mean scattering length λs of either 1 mm or 5 mm
- photon detection efficiency ε of 3% (fibre trapping efficiency (~10%) and SiPM QE (~50%)
- The grey curve shows the probability of misidentifying a 2 MeV γ as an e⁻ is estimated to be at the 10⁻² level with an efficiency of 87% for λ s=5 mm.

BEAM PHYSICS

GeV-neutrino interactions

MINI-II SET UP

37

20/10/22 GDR - Duphy

Rare event searches with LiquidO tecl

- WATER: Cherenkov (transparent)
- LAB: Scintillator + Cherenkov (transparent)
- NoWASH-0: LAB + PPO
- NoWASH-20: addition of paraffin wax into the LAB scintillator with PPO shifter
 - Scattering lengths in the mm range without significant absorption
 - Light yield losses are small
 - Radiopurity estimates are promising
 - Open the possibility of using techniques for high loadings which were rejected from attenuation length limitations

Electronics

- Analog memory digitiser using SAMLONG chip (CNRS/IJCLab + CEA/IRFU)
- Sampling frequency from 400 MHz to 3.2 GHz
- ADC dynamic range of 2.5 V coded on 12 bits (1 ADC tick = 0.61035 mV)
- Exists in 2, 8 or 16 ch desktop format, and 64 ch mini-crate
- Fast readout: potential resolution \leq 100ps

Light collection efficiency

20/10/22 GDR - Duphy

Rare event searches with LiquidO technology

Reactor neutrino background

scaling? much already demonstrated by NOvA...

common technology but not methodology

- •scintillator: ✓ (yield improvement)
- •fibres: ✔
- light collection system: √ (improvement?)
 photo-detector: √ (APD→SiPM OK?)
 different optimisation: R&D

GeV OK!! But ~I MeV physics @ IOkton? (R&D)_{Anatael Cabrera (CNRS-IN2P3)} — IJCLab / Université Paris-Saclay (Orsay)