

Light dark matter search with DarkSide-50

Davide Franco

GdR DUPhy - 19-21/10/2022

The Dual-Phase TPC

- 50 kg active mass of UAr
- •19 top + 19 bottom R11065 HQE 3" PMTs
- •36 cm height, 36 cm diameter
- •Low field of 0.2 kV/cm drift

Liquid Scintillator Veto against neutrons

- 4 m diameter sphere
- Boron-loaded: 1:1 PC and TMB
- 110 8" PMTs
- LY ~ 500 pe/MeV

Cherenkov Water Detector

- 11 m diam. x 10 m
- 80 PMTs

DarkSide-50

- **S2/S1** ratio
- S1 **PSD** (if available)

DarkSide-50

LAr scintillation times:

- singlet ~ 6 ns
- Triplet ~ 1600 ns

Singlet-to-triplet ratios:

- Nuclear recoils ~ 0.7
- Electron recoils ~ 0.3

The DS-50 high-mass search

Background-free over more than 530 days!

S1
Detection efficiency (g1) ~ 16%

Davide Franco - APC

Lowering the threshold

- 2018 First results on light dark matter candidates with liquid argon using the ionization channel:
 - DarkSide-50, Phys. Rev. Lett. 121 (2018) 081307
 - DarkSide-50, Phys. Rev. Lett. 121, 111303 (2018)
- 2019 End of the DarkSide-50 data taking
- 2021 Measurement of the LAr ionization response down to the sub-keV with DarkSide-50
 - DarkSide-50, Phys.Rev.D 104 (2021) 8, 082005
- 2022 Re-analysis of the DarkSide-50 dataset
 - DarkSide-50, arxiv:2207.11966 (2022)
 - DarkSide-50, arxiv:2207.11967 (2022)
 - DarkSide-50, arxiv:2207.11968 (2022)

The DS-50 low-mass search in brief

Thomas-Imel + extended custom model

$$Q_y^{ER} = \left(\frac{1}{\gamma} + p_0 \left(E_{er}\right)\right)$$

Davide Franco - APC

Low-energy ionization response: ER

Global fit to DS-50 calibration data with neutrons sources + external datasets (ARIS and SCENE)

Davide Franco - APC

Low-energy ionization response: NR

Exposure

- 650 live-days / 12 ton-day
- x 1.8 exposure used in 2018

Data Selection

- Quality cuts
 - Pulse-shape: remove anomalous pulses due to the pile-up of multiple S2's or S1+S2
 - Acceptance: 95% at 4 Ne and 99% at >15 Ne

• Selection cuts

- Fiducialization against external bg
- S2/S1 against S2's from alphas on the walls
- Time veto agains spurious (or "single") electrons

Dataset and data selection

Fiducialization

Alpha-induced S2 pulses

- Select events with max fraction of pes in one of the 7 central top PMTs
- Acceptance ~ 41%

- Reject events with "anomalous" S2/S1
- Cut tuned on calibration data
- Acceptance ~ 99%

Data Selection

Spurious Electrons

- Reject correlated events (if within 20 ms from the previous one)
- Acceptance ~ 97%

Data Selection

- Overall acceptance almost flat: 38.2% at 4 e⁻ and

- Both ³⁹Ar and ⁸⁵Kr **uniformly distributed** in the LAr bulk
- ³⁹Ar activity: 0.7 ± 0.1 mBq/kg
 - from high energy spectral fit
- ⁸⁵Kr activity: **1.8 ± 0.1 mBq/kg**
 - from high energy spectral fit
 - from fast coincidence through metastable state
 - from decay time fit
- Both unique first-forbidden beta decays: additional atomic exchange and screening effects

Background model: ³⁹Ar and ⁸⁵Kr

Uncertainty from atomic exchange and screening effects

- - New background model from material screening campaign

Davide Franco - APC

Background model: external

 $\mathcal{L} = \prod_{i \in \text{bins}} \mathcal{P}\left(n_i | m_i(\mu_s, \Theta)\right) \times \prod_{\theta_i \in \Theta} \mathcal{G}(\theta_i^0 | \theta_i$

Poisson probability of observing n_i events in the ith-bin with respect to the expected ones, $m_i(\mu_s,\Theta)$, with μ_s the signal strength

Gaussian pena to account fo nuisance parameters ($\Delta \theta$ are the no central values and uncertain

	Name	Source	Affected components
Amplitude	A_{FV}	uncertainty on the fiducial volume	WIMP, ³⁹ Ar, ⁸⁵ Kr, PMTs, Cryostat
	A_{Ar}	14.0% uncertainty on ³⁹ Ar activity	³⁹ Ar
	A_{Kr}	4.7% uncertainty on ⁸⁵ Kr activity	⁸⁵ Kr
	A_{pmt}	11.5% uncertainty on activity from PMTs	PMT
	A_{cryo}	6.6% uncertainty on activity from the cryostat	Cryostat
Shape	\mathbf{Q}_{Kr}	0.4% uncertainty on the ⁸⁵ Kr-decay Q-value	⁸⁵ Kr
	\mathbf{Q}_{Ar}	1% uncertainty on the ³⁹ Ar-decay Q-value	³⁹ Ar
	\mathbf{S}_{kr}	spectral shape uncertainty on atomic exchange and screening effects	⁸⁵ Kr
	\mathbf{S}_{Ar}	spectral shape uncertainty on atomic exchange and screening effects	³⁹ Ar
	Q_y^{er} .	spectral shape systematics from ER ionization response uncertainty	³⁹ Ar, ⁸⁵ Kr, PMTs, Cryostat
	Q_y^{nr}	spectral shape systematics from NR ionization response uncertainty	WIMP

Profile Likelihood and Systematics

$_{i},\Delta heta _{i})$	×	$\prod_{i \ \epsilon \ \text{bins}} \mathcal{G}\left(m_i^0 m_i(\Theta), \delta m_i(\Theta)\right)$	
alties or the		Statistical uncertainties of the simulated sample	
θ ₀ and ominal s nties)			

Electron Recoil Energy [keVer] 0.04 0.13 0.20 0.55 1.10 3.10 day) × kg 10-2 X Ne വ N ٠ 0) 10-3 DarkSide-50 Data Events Fitted Model 10^{-4} 0.25 0.00 -0.25 30 50 10 20 3 7 Number of Electrons

Tritium activity <1 µBq/kg (90% CL)

Background-Only Fit

Matter-Nucleon

Davide Franco - APC

WIMP-nucleon interactions

arxiv:2207.11966

WIMP-nucleon interactions + Migdal effect

б

X

× kg

 (keV^{2})

 E_{EM} [keV_{er}]

Davide Franco - APC

arxiv:2207.11967

arxiv:2207.11968

Davide Franco - APC

Leptophilic DM

50 ton LAr active volume, 20 ton fiducial: half a day to reach the same exposure of the DS50 low-mass analysis

DarkSide-20k

See Marie's talk about calibrations

50 ton LAr active volume, 20 ton fiducial: half a day to reach the same exposure of the DS50 low-mass analysis

Background suppression: Pulse Shape Discrimination rejects ERs with a power $>10^8$

URANIA: LAr extracted from 2-kmdepth CO₂ wells in Colorado

DarkSide-20k

ARIA: cryogenic isotopic distillation plant

- in a mine shaft at CarboSulcis, S.p.A. in Nuraxi-Figus (SU), Italy
- 350m tall distillation column
- designed to reduce ³⁹Ar isotopic fraction in UAr by factor 10 per pass

DarkSide-20k

The DarkSide-50 low mass search saga....

- Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50, DarkSide Collaboration, Phys.Rev.D 104 (2021) 8, 082005
- Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50, DarkSide Collaboration, arxiv:2207.11966 (2022)
- Search for dark matter-nucleon interactions via Migdal effect with DarkSide-50, DarkSide Collaboration, arxiv:2207.11967 (2022)
- Search for dark matter particle interactions with electron final states with DarkSide-50, DarkSide Collaboration, arxiv:2207.11968 (2022)

DarkSide-20k data taking expected in 2026

