Testing neutron to hidden neutron oscillations with Ultra-Cold **Neutrons Beams**

G. Ban¹, J. Chen¹, P.-J Chiu², B. Clément³, M. Guigue⁴, T. Jenke⁵, P. Larue³, T. Lefort¹, O. Naviliat¹, B. Perriolat⁵, G. Pignol³, S. Roccia^{3,5}, W. Sáenz-Arevalo^{1,*}, P. Schmidt-Wellenburg⁶

¹Laboratoire de physique corpusculaire, Caen, France. ²University of Zurich, Zurich, Switzerland. ³Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France. ⁴Laboratoire de Physique Nucléaire et des Hautes Énergies, Paris, France. ⁵Institut Laue-Langevin, Grenoble, France. ⁶Paul Scherrer Institute, Villigen, Switzerland.

1. Motivation

- Hidden matter: an extra avenue to explain dark matter^{*a*}
- New hints on the Baryogenesis problem (*n*-*n*' violates B)
- Explanation to several anomalies in precision measurements (τ_n , ν_s , GZK cutoff, ...)

3. Experimental setup

Turbine

• n-n' energy degeneracy suppressed with external magnetic fields $\Delta_{nn'} = (\Delta E) - (\delta m + \Delta E')$

 $= (\mu B) - (\delta m + \Delta E')$

7. Conclusions

- UCN beam experiments probed efficient over a wide range of mass splitting
- A new limit to the oscillations was established:

 $\tau_{nn'} > 1 \text{ s (95 \% C.L.) for } \delta m \in [6 - 72] \text{ peV}$

• There are still unexplored regions in the parameter space

*william.saenz@lpnhe.in2p3.fr *^a* arXiv:1707.04591 ^{*b*} arXiv:2206.08721 ^{*c*} B. Clément, STARucn

