International Workshop on the Origin of Matter-Antimatter Asymmetry

CP2023, 12-17 Feb. 2023 École de Physique des Houches

Mapping of the magnetic field

T. Bouillaud (bouillaud@lpsc.in2p3.fr) K. Svirina (svirina@lpsc.in2p3.fr)

MEASUREMENT OF THE NEUTRON EDM

Neutron spin precession in a weak magnetic and strong electric field

Solution:

✓ Use UCNS (up to 15 min storage) – to maximize the exposure in E

 \checkmark Large storage volume, good transport – to maximize the statistics

 \checkmark Control of the magnetic field: Hg co-magnetometer; shielding: MSR, AMS

FIELD PARAMETRIZATION

A purely static and very uniform 1 μ T magnetic field. The remaining nonuniformities are characterized by a polynomial expansion [2] :

where the modes $\overline{\Pi}_{l,m}$ are harmonic polynomials in x, y, z of degree l, and $G_{l.m}$ are the expansion coefficients. This is convenient and satisfies Maxwell's equations:

REQUIREMENTS

• On field production – B0 coil:

 $-0.6 \text{ pT/cm} < G_{1.0} < 0.6 \text{ pT/cm}$ **"Top-Bottom resonance matching condition"** [3] i.e. B_z needs to be similar enough between the two chambers

> $\sigma(B_z) = \sqrt{\langle B_z^2 \rangle} < 170 \text{ pT}$ to prevent neutron depolarization

• On field measurements – mapping:

 $\delta \hat{G}_3 < 20 \text{ fT/cm} - \text{accuracy of cubic mode}$ $\delta G_5 < 20 \, \mathrm{fT/cm}$ – accuracy of 5-order mode

 \hat{G}_3 and \hat{G}_5 should be measured precisely enough to calculate $d_{n \leftarrow Ha}^{\text{false}}$ with a precision below 10^{-28} e cm.

(False EDM is a systematic effect arising from the relativistic motional field $\vec{E} \times \vec{v}/c^2$

checks of the magnetic field uniformity: mapping

 $\vec{\nabla} \cdot \vec{B} = 0$ and $\vec{\nabla} \times \vec{B} = 0$.

experienced by the moving particles in combination with the residual magnetic gradients and leading to a frequency shift. The dominating contribution $d_{n\leftarrow Hq}^{false}$ is the false EDM transferred from the co-magnetometer atoms Hg¹⁹⁹.)

MAGNETIC FIELD MAPPER PAUL SCHERRER INSTITUT n2EDM experiment under construction at the UCN source at the Paul Scherrer Institute J[n2EDM A flip for the probe calibratio Fluxgate sensor Coil systems Vacuum **UCN** guides vessel **Fixed under** The motor **Precession** the MSR block chambers frame The mapping range $0 - 780 \,(\mathrm{mm})$ 0 – 360 (deg.) \pm 410 (mm) **Polarizing magne** motors Detectors The magnetic-field mapper is the designed measure to

FROM RAW DATA TO RESULTS

magnetic field at any point of the cylindric volume inside the emptied vacuum vessel.

Purposes:

- ✓ Coil system cartography
- **Offline control of high-order gradients**
- ✓ Searches for magnetic contamination

The bars at each I, m value correspond to the average normalized first-order gradient $G_{l,m}$ of 6 mapping sequences. The errorbars on each bar correspond to the reproducibility of the measurement.

 \checkmark The top-bottom resonance matching condition on $G_{1,0}$ is satisfied after the height adjustment (see the block below).

 $\checkmark \sigma(B_z) \approx 60 \, \text{pT}$ (arises mainly from $G_{2,0}$), fulfills the requirement on the neutron depolarization rate: $\sigma(B_z) < 170 \text{ pT}$.

CONCLUSION

SUCCESSFUL COMMISSIONING OF THE INTERNAL FIELD CENERATION.

B_o FIELD OPTIMIZATION **CONTROL OF ALL COILS** \rightarrow

- Mapping 63 correction coils. \checkmark
- Catalogue of all coil constants $G_{l,m}$
- Calculated set of currents to produce the <u>correction</u> for $G_{2,0}$, $G_{2,2}$, $G_{3,0}$, $G_{5,0}$

Fluxgate

sensor

VERTICAL ADJUSTMENT OF THE COIL SYSTEM

The first vertical map after the installation of the B_0 coil showed a deviation in $G_{1.0}$ which was an evidence of a vertical displacement of the entire coil. This was anticipated, and a possibility of mechanical adjustment was taken into account by the design.

 $-0.6 \text{ pT/cm} < G_{1,0} < 0.6 \text{ pT/cm}$

Evaluation of the vertical shift value in order to get the $G_{1,0}$ gradient within the desired range

An example of a vertical scan of the B₂ field component in **initial** B_0 coil position.

The 1st and 2nd-order gradients:

 $f_{1.0} = -19.9 \text{ pT/cm}$ – compatible with a vertical shift of the entire coil system with respect to the MSR by $\Delta z = 3$ mm

✓ $G_{2,0} = (-7 \pm 1) \times 10^{-2} \text{pT/cm}^2$ – meets the expectations (COMSOL-based simulations).

Contribution of the false EDM produced by gradients $G_{3,0}$, $G_{5,0}$, $G_{7,0}$ with and without correction. <u>Option 1:</u> data-taking with the bare B0 field at 1μ T.

The false EDM of orders 3 and 5 is not negligible, but the reproducibility of the gradients is good enough to calculate $d_{n \leftarrow Hg}^{\text{false}}$ with a good precision.

<u>Option 2:</u> data-taking with the optimized field at 1μ T. The false EDM reduced to essentially zero.

A vertical scan of the B_{τ} field component **after** the B_0 coil adjustment:

 \checkmark The new value of the 1st order gradient in the **B**₀-down configuration: $G_{1,0} = -0.59 \text{ pT/cm}$, i.e. it is in agreement with the prediction and meets the requirement. This example demonstrates the impressive sensitivity of the mapping!

Literature

[1] C. Abel et al., Phys. Rev. Lett. 124 (2020), 081803 [2] C. Abel et al., Phys.Rev.A 99 (2019) 4, 042112

80.2 ± 2.4

 0 ± 1.1

[3] N.J. Ayres et al., Eur.Phys.J.C 81 (2021) 6, 512 [4] C. Abel et al., Phys.Rev.A 106 (2022) 3, 032808