

Leptonic CPV phases: impact for Higgs & Z decays and CP-asymmetries

Emanuelle Pinsard - Laboratoire de Physique de Clermont

HNL & boson decays

NTE**nsit**'

LPNHE PARIS

Contribution of the **heavy neutral** leptons (HNL) & their CPV phases to cLFV boson decays:

 $Z \to \ell_{\alpha} \ell_{\beta}$ and $H \to \ell_{\alpha} \ell_{\beta}$ mila with a with a most

Minimal $3 + 2\nu_{c}$ for phenomenological analyses

✓ Ad-hoc construction: SM + 2 Majorana massive states ⇒ new mixings and **CPV phases** (Dirac & Majorana)

 ✓ No assumption on the mass generation mechanism

Active-sterile mixing $\mathcal{U}_{\alpha i}$

Left-handed lepton mixing $\tilde{\mathscr{U}}_{\text{PMNS}}$ 3 × 3 sub-block, **non-unitary**! $\mathscr{U}_{5\times5} = \left[\begin{array}{ccc} \mathscr{U}_{\tau 1} & \mathscr{U}_{\tau 2} & \mathscr{U}_{\tau 3} \end{array} \right] \mathscr{U}_{\tau 4} & \mathscr{U}_{\tau 5}$

⇒ Modified charged & neutral lepton currents!

 $|n_L\rangle = \mathcal{U}_{5\times 5} |\nu_i\rangle$

 \mathcal{U}_{e4} \mathcal{U}_{e5}

 $\mathcal{U}_{\mu4}$ $\mathcal{U}_{\mu5}$

 \mathcal{U}_{e1} \mathcal{U}_{e2} \mathcal{U}_{e3}

 $\mathcal{U}_{\mu 1} \quad \mathcal{U}_{\mu 2} \quad \mathcal{U}_{\mu 3}$

 \mathcal{U}_{s1} \mathcal{U}_{s2} \mathcal{U}_{s3} \mathcal{U}_{s4} \mathcal{U}_{s5}

 $\mathcal{U}_{s'1} \quad \mathcal{U}_{s'2} \quad \mathcal{U}_{s'3} \quad \mathcal{U}_{s'4} \quad \mathcal{U}_{s'5}$

A. Abada, J.Kriewald, <u>EP</u>, S. Rosauro, A. M. Teixeira, arXiv:2207.10109

✓ Well-defined interactions in the physical basis

 \implies Explore the **low-energy** phenomenology common to complete models (type I seesaw, ISS, ...)

- → Sizeable contributions to cLFV observables
- → Interference effects between heavier states expected

Constructive & **destructive** interference effects in cLFV leptonic & boson decays!

Phenomenological study

All available experimental constraints are included

- Limits on active-sterile mixings
- ✓ Negative results of **searches for sterile states**
- ✓ Electroweak precision tests
- ✓ Bounds on other cLFV transitions

 \implies No assumptions on the active-sterile mixings & random variation of all new CPV phases

CP-asymmetries in Z decays

 $Z \rightarrow \mu \tau$ decays potentially observable AND impacted by CPV phases

 \implies Consider CP-asymmetries

$$\mathscr{A}_{CP}(Z \to \mathscr{\ell}_{\alpha} \mathscr{\ell}_{\beta}) = \frac{\Gamma(Z \to \mathscr{\ell}_{\alpha}^{-} \mathscr{\ell}_{\beta}^{+}) - \Gamma(Z \to \mathscr{\ell}_{\alpha}^{+} \mathscr{\ell}_{\beta}^{-})}{\Gamma(Z \to \mathscr{\ell}_{\alpha}^{-} \mathscr{\ell}_{\beta}^{+}) + \Gamma(Z \to \mathscr{\ell}_{\alpha}^{+} \mathscr{\ell}_{\beta}^{-})}$$

Additional observables to ultimately probe the presence of CPV!

→ Up to which extent can such a **minimal BSM** model be at the source of non-vanishing contributions to CP-asymmetries? (induced by *both* Majorana and Dirac CPV phases)

Impact of (potential) measurement of \mathscr{A}_{CP}

 $m_4 = 5 \text{ TeV}, m_5 = 5.1 \text{ TeV}, s_{14} = -0.0028, s_{15} = 0.0045, s_{24} = -0.0052, s_{25} = -0.0037, s_{34} = -0.052, s_{35} = -0.028, s_{15} = -0.028$ **CP** Conserving

Testing HNL via several observables

Consider $\mu - \tau$ observables: $Z \rightarrow \mu \tau$, $\mathscr{A}_{CP}(Z \rightarrow \mu \tau)$ and $\tau \rightarrow 3\mu$

Conclusions

- > Minimal and simple: SM + 2 heavy Majorana ν_s
- > Impact of the heavy steriles depends on their masses &

 $\boldsymbol{P}_{\boldsymbol{B}} \begin{bmatrix} m_4 = 5 \text{ TeV}, m_5 = 5.1 \text{ TeV}, s_{14} = 0.00020, s_{15} = -7.1 \times 10^{-5}, s_{24} = -0.0024, s_{25} = 0.029, s_{34} = -0.073, s_{35} = -0.037, \\ \delta_{14} = 0.71, \delta_{15} = 5.21, \delta_{24} = 2.06, \delta_{25} = 4.78, \delta_{34} = 3.80, \delta_{35} = 4.74, \varphi_4 = 1.77, \varphi_5 = 4.33. \end{bmatrix}$ **CP Violating**

 \checkmark Both benchmark points P_A and P_B lead to common cLFV predictions: with $\mu \to 3e$, $\mu - e$ conversion, $\tau \to 3\mu$ and $Z \to \mu\tau$ within future sensitivity

Indistinguishable mixing patterns if only cLFV signals are observed <

BUT CP asymmetries in Z decays offer a clear distinction: P_B leads to $\mathscr{A}_{CP}(Z \to \mu \tau) = 30\%$ → **Disentangle between CP conserving** et **CPV** scenarios! mixings with active states (CPV) \Rightarrow non unitary \mathcal{U}_{PMNS}

cLFV boson decays are sensitive to the presence of HNL

- CPV phases have a clear impact on the decay rates
- $\succ Z \rightarrow \mu \tau$ within future sensitivity, large associated \mathscr{A}_{CP}
- > Importance of taking **multiple observables** into account to distinguish between CPV and CP conserving scenarios

CP asymmetry key to establish the presence of **CPV**!

http://clrwww.in2p3.fr

