Interpreting Electric Dipole Moments

Jordy de Vries

University of Amsterdam, Nikhef

Outline

Part I: Why do we (I?) care about dipole moments ?

Part II: Interpreting Electric Dipole Measurement

Part III: Interplay with high-energy experiments and cosmology

Symmetry considerations

• Electric and Magnetic Dipole Moment (EDM and MDM)

Symmetry considerations

• Electric and Magnetic Dipole Moment (EDM and MDM)

• **CPT theorem:** T violation \longleftrightarrow CP violation

EDMs from the Standard Model

- No EDMs at one loop
- At two loops: individual diagrams contribute but sum vanishes
- Quark EDMs induced at three loops

$$d_q \sim 10^{-34} e\,{\rm cm}$$

- Electron EDM at 4 loops
- Compare with magnetic dipole moment:
- **Disclaimer 1:** electron EDM can be a bit larger due to hadronic loops
- **Disclaimer 2:** EDMs of composite objects can be larger (still small)

Electric dipole moments and the CKM matrix

Limit on neutron EDM in e cm

More progress on electron EDM in recent times (factor 100 in 10 years)

Electric dipole moments and the CKM matrix

Limit on neutron EDM in e cm

The strong CP problem

't Hooft '76, '78

Limit on **neutron** EDM in e cm

Neutron EDM forces $\theta < 10^{-10}$ (the strong CP problem)

Unknown dragons

Example 1: Bino-Higgsino loop contribution to the electron EDM

- CPV phase already at one-loop !
- Typical size of EDM

$$d_e \sim \left(\frac{\alpha_{em}}{\pi}\right)^n \frac{m_e}{\Lambda^2} \sin\phi$$

If phase = O(1): $\Lambda > 30$ TeV (n=1)

Unknown dragons

- CPV phase already at one-loop !
- Typical size of EDM

$$d_e \sim \left(\frac{\alpha_{em}}{\pi}\right)^n \frac{m_e}{\Lambda^2} \sin\phi$$

If phase = O(1):
$$\Lambda > 30 \text{ TeV} (n=1)$$

• In left-right symmetric models

$$L = i\Xi(\bar{u}_R \gamma_\mu d_R)(\bar{u}_L \gamma_\mu d_L) + \text{h.c}$$
$$\Xi \sim \sin \alpha / \Lambda^2$$

• Tree-level CP violation, EDMs probe ~ 100 TeV scale

Very active experimental field

System	Group	Limit	C.L.	Value	Year
²⁰⁵ TI	Berkeley	1.6×10^{-27}	90%	6.9(7.4) × 10 ⁻²⁸	2002
YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
ThO	ACME	1.1×10^{-29}	90	4.3(3.1)(2.6) × 10 ⁻³⁰	2018
HfF ⁺	Boulder	4.1×10^{-30}	90	$-1.3(2.0)(0.6) \times 10^{-30}$	2022
n	PSI	1.8×10^{-26}	90	0.0(1.1)(0.2) × 10 ⁻²⁶	2020
¹²⁹ Xe	UMich	4.8×10^{-27}	95	$0.26(2.3)(0.7) \times 10^{-27}$	2019
¹⁹⁹ Hg	UWash	7.4 × 10 ⁻³⁰	95	-2.2(2.8)(1.5) × 10 ⁻³⁰	2016
²²⁵ Ra	Argonne	1.4×10^{-23}	95	4(6.0)(0.2) × 10 ⁻²⁴	2016
muon	E821 BNL g-2	1.8×10^{-19}	95	$0.0(0.2)(0.9) \times 10^{-19}$	2009

+ new electron, muon, neutron, proton, Xe, Ra, Rn, BaF..... experiments

• How do we interpret these limits ?

Outline

Part I: Why do we care about dipole moments ?

Part II: Interpreting Electric Dipole Measurement

Part III: Interplay with high-energy experiments and cosmology

The EDM metromap

Heavy BSM physics and the SM EFT

• Assume BSM fields exists but are heavy → Integrate them out

Fermi's theory:

• We don't need 'high-energy details', the W boson, at low energies !

Heavy BSM physics and the SM EFT

• Assume BSM fields exists but are heavy → Integrate them out

Fermi's theory:

• We don't need 'high-energy details', the W boson, at low energies !

Standard model as an EFT

- Assume any BSM physics lives at scales $\Lambda >> M_{EW} \sim 100 \text{ GeV}$
- Match to set of **effective** operators (model independent)
 - 1) Degrees of freedom: Only Standard Model fields !!
 - 2) Symmetries: Lorentz, SU(3)xSU(2)xU(1), nothing else

$$L_{new} = \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

Standard model as an EFT

- Assume any BSM physics lives at scales $\Lambda >> M_{EW} \sim 100 \text{ GeV}$
- Match to set of **effective** operators (model independent)
 - 1) Degrees of freedom: Only Standard Model fields !!
 - 2) Symmetries: Lorentz, SU(3)xSU(2)xU(1), nothing else

$$L_{new} = \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

• At energy E, operators of dimension (4+n) contribute as

$$\left(\frac{E}{\Lambda}\right)^n$$

so at low energy: lowest-dim operators are relevant !

• Roughly 25 CP-violating structures at dimension six (more flavor assignments)

Fermion dipole operators

 M_{CP}

Electric and magnetic dipoles: canonical dimension five Chirality flip \rightarrow SU_L(2) gauge symmetry requires Higgs

When the dust settles.....

Traditional division of labor

'Diamagnetic' EDMs. No electron spin and nonzero nuclear spin.

• Examples: neutron, deuteron, atoms such as ¹⁹⁹Hg, ²²⁵Ra

Traditional division of labor

'Diamagnetic' EDMs. No electron spin and nonzero nuclear spin.

• Examples: neutron, deuteron, atoms such as ¹⁹⁹Hg, ²²⁵Ra

'Paramagnetic' EDMs. Nonzero electron spin and zero nuclear spin.

• Examples: ²⁰⁵Tl, Molecules such as HfF, ThO, BaF, and muon EDM

Paramagnetic systems

е

System	Group	Limit	C.L.	Value	Year
²⁰⁵ TI	Berkeley	1.6×10^{-27}	90%	6.9(7.4) × 10 ⁻²⁸	2002
YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
ThO	ACME	1.1×10^{-29}	90	4.3(3.1)(2.6) × 10 ⁻³⁰	2018
HfF ⁺	Boulder	4.1×10^{-30}	90	-1.3(2.0)(0.6) × 10 ⁻³⁰	2022

- Why these complicated systems ? Cannot use free electrons....
- Why not simply use Hydrogen ?

Paramagnetic systems

System	Group	Limit	C.L.	Value	Year
²⁰⁵ Tl	Berkeley	1.6×10^{-27}	90%	6.9(7.4) × 10 ⁻²⁸	2002
YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
ThO	ACME	1.1×10^{-29}	90	4.3(3.1)(2.6) × 10 ⁻³⁰	2018
HfF ⁺	Boulder	4.1×10^{-30}	90	-1.3(2.0)(0.6) × 10 ⁻³⁰	2022

- Why these complicated systems ? Cannot use free electrons....
- Why not simply use Hydrogen ?

Schiff Theorem: EDMs of charged constituentsare screened in a neutral atomSchiff, '63

- Assumption : non-relativistic constituents
- Invalid in heavy atoms/molecules

 $d_A(d_e) = K_A d_e \qquad K$

$$K_A \propto Z^3 \alpha_{em}^2$$

Sandars '65

Probing the leptonic interactions

Polar molecules:

Convert small external to huge internal E field

 $E_{eff} \propto 10^6 E_{ext}$

Requires high-accuracy electronic structure computations

$$\Delta E_{ThO} = (80 \pm 10) \cdot GeV\left(\frac{d_e}{e \ cm}\right)$$
$$d_e < 1.4 \cdot 10^{-29} \ e \ cm \qquad \text{Andreev et al '18}$$

Similar story for HfF with factor 2 better limit

Complementary measurements

Onwards to hadronic CPV

Hadronic/Nuclear CP-violation

Theoretically more difficult

Goal: Electric dipole moments of nucleons, nuclei, and diamagnetic systems

Onwards to hadronic CPV

Nucleon and nuclear EDMs up to NLO

- Chiral power counting: handful interactions dominate hadronic EDMs
- Lowest-order interactions: **CPV pion-nucleon couplings (2x)**

CPV force dominates EDMs of nuclei and diamagnetic atoms
Crucial for current upcoming measurements of Hg, Xe, Ra, Rn, ...

nucleon

Nucleon and nuclear EDMs up to NLO

- Chiral power counting: handful interactions dominate hadronic EDMs
- Lowest-order interactions: **CPV pion-nucleon couplings (2x)**

The strong CP problem π^{\pm} **Neutron EDM** g_0 g_A $d_{n} = \overline{d}_{0}(\mu) - \overline{d}_{1}(\mu) - \frac{eg_{A}\overline{g}_{0}}{4\pi^{2}F_{\pi}} \left(\ln \frac{m_{\pi}^{2}}{\mu^{2}} - \frac{\pi}{2} \frac{m_{\pi}}{m_{N}} \right)$ $\bar{g}_0 = -(15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta} \longrightarrow d_n \simeq -2.5 \cdot 10^{-16} \bar{\theta} e \,\mathrm{cm}$ $\bar{\theta} < 10^{-10}$ Experimental constraint:

A proper assessment requires a non-perturbative calculation ! Lattice QCD (Shindler et al '19) $d_n = -(1.52 \pm 0.7) \cdot 10^{-16} e \overline{\theta}$ cm (Liang et al '23) $d_n = -(1.48 \pm 0.4) \cdot 10^{-16} e \overline{\theta}$ cm

The strong CP problem **Neutron EDM** g_0 g_A $d_{n} = \overline{d}_{0}(\mu) - \overline{d}_{1}(\mu) - \frac{eg_{A}\overline{g}_{0}}{4\pi^{2}F_{-}} \left(\ln \frac{m_{\pi}^{2}}{\mu^{2}} - \frac{\pi}{2} \frac{m_{\pi}}{m_{N}} \right)$ $\bar{g}_0 = -(15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta} \longrightarrow d_n \simeq -2.5 \cdot 10^{-16} \bar{\theta} e \,\mathrm{cm}$ $\bar{\theta} < 10^{-10}$ Experimental constraint:

A proper assessment requires a non-perturbative calculation !

Large uncertainties for dimension-six operators (quark chromo-EDM, four-quark, Weinberg, etc)

EDMs of charged particles

All-purpose ring (¹H, ²H, ³He, ...) ~ $10^{-28,29}$ e cm

100-1000 x current neutron EDM sensitivity! (takes a while tough....)

Already used for muon EDM $d_{\mu} \leq 1.8 \cdot 10^{-19} \ e \ cm$ (95% C.L.) Bennett *et al* (BNL g-2) PRL '09

The CPV NN force and nuclear EDMs

- Tree-level: no loop suppression \rightarrow EDM predictions
- Orthogonal to nucleon EDMs, sensitive to different CPV structures

Recent review: arXiv:2001.09050

The CPV NN force and nuclear EDMs

- Tree-level: **no loop** suppression \rightarrow EDM predictions
- Orthogonal to nucleon EDMs, sensitive to different CPV structures

JdV et al '11 '15

$$d_{D} = 0.9(d_{n} + d_{p}) + \left[(0.18 \pm 0.02) \,\overline{g}_{1} + (0.0028 \pm 0.0003) \,\overline{g}_{0} \,\right] e \, fm$$

, , , , , , , , , , , , , , , , , , ,	Theta term	Quark CEDMs	Four-quark operator	Quark EDM and Weinberg
$\frac{\left \frac{d_{D}-d_{n}-d_{p}}{d_{n}}\right $	0.5 ± 0.2	5 ± 3	20 ± 10	≅0

Unraveling sources with 2 EDMs

• Compare EDM ratios for theta term and BSM dim-6 four-quark operator

- Nuclear EDMs complementary to nucleon EDMs
- Deuteron is just a placeholder: other nuclear systems are similar
- If we can control nuclear matrix elements !

Onwards to heavy systems

Graner et al, '16

Strongest bound on atomic EDM:

$$d_{199}_{Hg} < 8.7 \cdot 10^{-30} \ e \ cm$$

Contribution from CP-odd nuclear force

Screening incomplete: nuclear finite size (Schiff moment S)

$$S = g(a_0\overline{g}_0 + a_1\overline{g}_1) e fm^3$$

	a ₀ range	a ₁ range
¹⁹⁹ Hg	0.3±0.4	0.45 ± 0.7
²²⁵ Ra	2.5±7.5	65±40

Hadronic and nuclear uncertainties make interpretation difficult !

Outline

Part I: Why do we (I?) care about dipole moments ?

Part II: Interpreting Electric Dipole Measurement

Part III: Interplay with high-energy experiments

Colliders versus EDMs

- Look at interactions with Higgs that violate CP
- Time constraints: a subset of dim-6 operators

$$L_{eff} = \sum C_{\alpha} O_{\alpha} + h.c. \qquad C_{\alpha} = c_{\alpha} + i \tilde{c}_{\alpha} \qquad C_{\alpha} \sim \frac{1}{\Lambda^2}$$

Some additional interactions without direct SM analogues

Collider searches

• These operators modify all kinds of LHC processes

Top-Antitop-Higgs production

Single-top production and top decay

• But also just higgs production/decay via loop processes

How much room for CPV is left?

• EDMs are very constraining. Bounds dominated by Hg and ThO/HfF

How much room for CPV is left?

• Nuclear and hadronic theory needs to improve

CP-even versus CP-odd

JdV et al '16

- **CP-even** Higgs couplings dominated by **LHC** measurements
- **CP-odd** Higgs couplings dominated by **low-energy** measurements
- Very complementary experiments

An explicit example: CPV in Higgs sector

- h-gluon-gluon
- h-gamma-gamma
- h-gamma-Z
- W-W-gamma
- h-Z-Z (not independent)

- Evades flavor constraints (MFV automatic). Scale can be relatively low
- Motivated by universal theories (BSM couples to SM bosons/fermions through SM currents)

Peskin, Takeuchi '90 Barbieri et al '04 Ferreira et al '17

Collider and low-energy probes

• Induce CPV angular distribution in pp \rightarrow h/V + 2 jets

e.g. ATLAS 2006.15458 Bernlochner et al '19

 $0.23 < \tilde{C}_{HWB}/\Lambda^2 < 2.34 \ (TeV^{-2})$ -0.19 < $\tilde{C}_{HGG}/\Lambda^2 < 0.03 \ (TeV^{-2})$

Collider and low-energy probes

• Induce CPV angular distribution in pp \rightarrow h/V + 2 jets

e.g. ATLAS 2006.15458 $0.23 < \tilde{C}_{HWB}/\Lambda^2 < 2.34 \ (TeV^{-2})$ Bernlochner et al '19 $-0.19 < \tilde{C}_{HGG}/\Lambda^2 < 0.03 \ (TeV^{-2})$

- Same couplings induce contributions to EDMs at loop level
- Also induce CPV in B \rightarrow s gamma transitions

Low-energy constraints are stringent

- EDM constraints are very stringent for single couplings
- But EDMs only probe several direction in parameter space

 $0.17\,C_{\varphi\tilde{B}}{+}0.86\,C_{\varphi\tilde{W}}{+}0.48\,C_{\varphi\tilde{W}B}$

Free direction :

CP violation in 'universal theories'

Cirigliano, JdV et al PRL '19

HL-LHC projections from Bernlochner et al '18

- Low-energy limits avoided in global fits (free directions)
- Future of BSM searches: inclusive low- and high-energy probes

The EDM metromap

Conclusion/Summary/Outlook

EDMs

- ✓ Very powerful search for BSM physics (probe high scales)
- ✓ Heroic experimental effort and **great outlook**
- ✓ **Theory improvements** needed to get the most out of the measurements

EFT framework

- ✓ Framework exists for CP-violation (EDMs) from 1st principles
- ✓ Keep track of **symmetries** (gauge/CP/chiral) from multi-Tev to molecular scales
- ✓ Need young people working on CP violation of 'large' systems.

EDMs in era of the LHC

- \checkmark EDMs play important role in global searches for BSM physics
- ✓ Complementary to many high-energy searches
- ✓ Constraining for electroweak baryogenesis (not today)

Progress with molecules

• Division in para- and diamagnetic systems is artifical

- Contribution suppressed by α_{em}^2 but still relevant !
- For instance, limit from polar molecule ThO $\bar{\theta} < 10^{-8}$
- Only factor 100 away! Could be overcome in next generation!

CP-even versus CP-odd

- EDMs allow roughly 1% of CP-violation in top Yukawa coupling
- Rules out several models of electroweak baryogenesis

Jorinde van de Vis et al '17, '18

Other electric dipole moments

- Take a classical dipole configuration
- Electric dipole $\sim d \sim q r$
- Does not violate anything

- So we mean with an EDM: the coupling of **spin** and the **E-field**.
- For electron, neutron, atom, the only quantity available is the spin.
 So there is no 'r' around
- So where does the non-CPV EDM of molecules come from ?

Double-well potential

- Analogy take a double-well potential
- If V_0 is very small, get usual solutions

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) & \text{if } 0 < x < a, \\ 0 & \text{otherwise,} \end{cases}$$

V

Double-well potential

- Analogy take a double-well potential
- If V_0 is very large, get usual solutions

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) & \text{if } 0 < x < a, \\ 0 & \text{otherwise,} \end{cases}$$

- With nonzero V₀, two solutions appear with different parity and a small enery difference (tunneling effect !). E₊ E₋ ~ b
- A molecule like water has indeed **a nearly-degenerate** ground state with opposite parity

Fake EDMs

- So we have 2 states which we call $|\pm\rangle$
- Turn on Electric field E (mixing of states)

$$H = \left(\begin{array}{cc} \mathcal{E}^+ & 0\\ 0 & \mathcal{E}^- \end{array}\right) + \left(\begin{array}{cc} 0 & Eb\\ Eb & 0 \end{array}\right)$$

• Diagonalize matrix to get energy eigenvalues

$$\mathcal{E}_{1,2} = \frac{1}{2}(\mathcal{E}_{+} + \mathcal{E}_{-}) \pm \sqrt{(\mathcal{E}_{+} - \mathcal{E}_{-})^{2}/4 + E^{2}b^{2}}$$

Fake EDMs

- So we have 2 states which we call $|\pm\rangle$
- Turn on Electric field E (mixing of states)

$$H = \left(\begin{array}{cc} \mathcal{E}^+ & 0\\ 0 & \mathcal{E}^- \end{array}\right) + \left(\begin{array}{cc} 0 & Eb\\ Eb & 0 \end{array}\right)$$

• Diagonalize matrix to get energy eigenvalues

$$\mathcal{E}_{1,2} = \frac{1}{2}(\mathcal{E}_{+} + \mathcal{E}_{-}) \pm \sqrt{(\mathcal{E}_{+} - \mathcal{E}_{-})^{2}/4 + E^{2}b^{2}}$$

• If the E field is smaller than the energy gap

$$\mathcal{E}_{1,2} = \frac{1}{2}(\mathcal{E}_{+} + \mathcal{E}_{-}) \pm \frac{1}{2}(\mathcal{E}_{+} - \mathcal{E}_{-})\left(1 + \frac{2E^{2}b^{2}}{(\mathcal{E}_{+} - \mathcal{E}_{-})^{2}}\right)$$

- The energy shift is quadratic in the E field !! So no P or T violation
- If the E field is larger than the gap: degenerate ground state

$$\mathcal{E}_{1,2} = \frac{1}{2}(\mathcal{E}_+ + \mathcal{E}_-) \pm Eb$$

EDM theorem

- Nonzero EDMs imply P and T (and CP) violation if the system has a **nondegenerate ground state**
- Note: all subatomic particles are non-degenerate
 - 1. Uuuuh, what about H₂O or NH₃ molecules. HUGE EDMs. ~ 10^{-8} e cm

Degenerate ground states, no signal for CP violation !

2. What about CP violation in the Standard Model (SM) ? How large are EDMs expected to be ?

Some musings

Is there really a problem ?

- Not really. It is just a parameter. No inconsistencies.
- Could it have been larger?
- Seems yes, nothing really changes in the universe if $\theta \sim 0.1$ No anthropic argument.

Is small theta radiatively stable?

- SM has a remarkable property: theta is technically natural
- Ellis/Gaillard '79: tiny CKM contributions

 $\Delta \bar{\theta} \sim 10^{-16}$

• This property is lost in generic BSM extensions !

If we do think it is a problem, can we solve it?

- **UV solutions:** P or CP is a symmetry of UV theory. Break at some scale to generate CKM phase —> Avoid generating a large theta term is not easy!
- IR solution: Use a Peccei-Quinn mechanism to dynamically set theta to zero. AXIONS
- Ruled out solution: massless up quark

Ubaldi '08, Inka Hammer '15, Lee et al '20.

- Many BSM models for electroweak baryogenesis
 - 1. A strong first-order EW phase transition

Kuzmin, Kubakov, Shaposhnikov '85 Cohen, Kaplan, Nelson '93

Does not happen for $m_h > 60 \text{ GeV} \rightarrow \text{need new physics} \sim \text{TeV or lower}$

Experimental probes: di-Higgs production, new scalars, Higgs couplings, Gravitational waves

• Generation of matter happens during EW phase transition

2. Additional CP-violation. CKM phases + theta term not enough.

CP-violation ~ Higgs field to create **overdensity of lefthanded particles** in front of bubble

• Generation of matter happens during EW phase transition

2. Additional CP-violation. CKM phases + theta term not enough.

Chiral asymmetry transformed into **Baryon asymmetry** by electroweak sphaleron processes (efficient for $T>M_W$)

• Generation of matter happens during EW phase transition

2. Additional CP-violation. CKM phases + theta term not enough.

B+L is captured by expanding bubble as sphalerons turn off at nonzero v

Complicated calculations and large associated uncertainties

Order-of-magnitude level predictions

Lee, Cirigliano, Ramsey-Musolf '05 Postma, van de Vis '19 Cline, Kainulainen '20

Electroweak baryogenesis and the SM-EFT

- Can we do EWBG with the SM-EFT to capture a lot of models at once?
- Attempt 1: phase transition and CPV via SM-EFT dim-6 operators
- EFT inconsistent: phase transition needs light BSM physics

JdV, Postma, van de Vis, White '17

- Second attempt: assume strong first-order transition occurs
- Describe CPV by effective dim-6 Yukawa couplings JdV, Postma, van de Vis, '18

$$L = -y_f \bar{f} f h - \frac{y_f}{\Lambda_f^2} \bar{f} i \gamma^5 f (v^2 h + \cdots)$$

• The CPV source (interference SM and dim-6) scales as

$$S_{CPV} \sim \frac{y_f^2}{\Lambda_f^2} \times v^3 \frac{dv}{dz}$$

• Main focus in literature on top quark

Does it work ? $L = -y_f \overline{f} f h - \frac{y_f}{\Lambda_f^2} \overline{f} i \gamma^5 f (v^2 h + \cdots)$

- Observed Baryon asymmetry requires 5-10% CPV in top-Yukawa
- Corresponds to $\Lambda_t \leq 1 \text{ TeV}$
- LHC data can still accommodate this, but

• Strongly constrains lot of models (e.g. 2 Higgs-doublet models)

Does it work ? $L = -y_f \overline{f} f h - \frac{y_f}{\Lambda_f^2} \overline{f} i \gamma^5 f (v^2 h + \cdots)$

- Observed Baryon asymmetry requires 5-10% CPV in top-Yukawa
- Corresponds to $\Lambda_t \leq 1 \text{ TeV}$
- LHC data can still accommodate this, but

- Lighter fermions hopeless since CPV source scales as y_f^2 ?
- No! quark chiral asymmetry washed out by strong sphalerons + Yukawa !

Giudice, Shaposhnikov '94

Does it work?

- Despite small Yukawa: tau as efficient as top
- Requires roughly $\Lambda_{\tau} \leq 1 \text{ TeV}$

JdV, Postma, van de Vis, '18

• Consistent with all data

- Weizmann group extended calculations to muons
- But Yukawa couplings too small

Fuchs et al '19

Does it work?

- Despite small Yukawa: tau as efficient as top
- Requires roughly $\Lambda_{\tau} \leq 1 \text{ TeV}$

JdV, Postma, van de Vis, '18

- Consistent with all data
- Test: electron EDM improves by 2 orders of magnitude
- Measure $h \to \tau + \bar{\tau}$ at 1% level (seems possible at CLIC or FCC-ee)
- Measure τau-EDM at fixed-target collisions at LHC?

Coupling modifier	HL-	LHC +	
(precision in %)	CLIC ₃₈₀	FCC-ee ₃₆₅	
κ_W	0.73	0.41	PHYSICAL REVIEW LETTERS 123, 011801 (2019)
κ_Z	0.44	0.17	
κ_g	1.5	0.90	Novel Method for the Direct Measurement of the τ Lepton Dipole Moments
κ_{γ}	1.4 *	1.3	J. Fu, ¹ M. A. Giorgi, ² L. Henry, ³ D. Marangotto, ¹ F. Martínez Vidal, ³ A. Merli, ¹ N. Neri, ¹ and J. Ruiz Vidal ³
$\kappa_{Z\gamma}$	10^{*}	10 *	¹ INFN Sezione di Milano and Università di Milano, 20133 Milano, Italy ² INFN Sezione di Pisa and Università di Pisa, 56127 Pisa, Italy
κ_c	4.1	1.3	³ IFIC, Universitat de València-CSIC, 46980 Valencia, Spain
κ_t	3.2	3.1	(Received / February 2019; published 2 July 2019)
κ_b	1.2	0.64	
$^{\prime \nu}\mu$	4.4	3.2	
$\kappa_{ au}$	1.4	0.66	

Charting the European Course to the High-Energy Frontier 1912:13466

Just got out

- Method based on Gradient Flow
- Three pion masses and three lattice spacings
- Fit to physical point based on ChPT

$$d_n = -(1.5 \pm 0.7) \cdot 10^{-16} \ \overline{\theta} \ e \ cm$$

• Still not that convincing...

Jack Dragos, Andrea Shindler, Tom Luu, Jdv, Ahmed Yousif, ArXiv: 1902.03254