

CP violation and (heavy) Neutrinos

Jonathan Kriewald

Jožef Stefan Institute

CP2023 12.02. - 17.02.

Jonathan Kriewald

14.02.23

Flavour violation in SM

Flavour and CP violation: SM

Flavour in the Standard Model: interactions (and transitions) between fermion families

Gauge interactions are flavour universal

Yukawas Y_{ij}^{u} , Y_{ij}^{d} and Y_{ij}^{ℓ} encode all flavour dynamics

(Masses, mixings and CP violation)

SM quark sector:

6 massive states

flavour violated in charged current interactions $V^{ij}_{CKM}W^{\pm}\bar{q}_iq_j$

total baryon number is conserved in SM interactions CP violation: δ_{CKM} and θ_{QCD} (not enough to explain BAU from baryogenesis)

CKM paradigm extensively probed:

Meson oscillations & decays, β **decays, CP violation...** Few tensions, CAA, V_{cb} , V_{ub} , ...

14.02.23

Flavour violation in SM

Flavour and CP violation: SM

Flavour in the Standard Model: interactions (and transitions) between fermion families

 $\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \not{F} \not{D} \not{\mu} + h.c. \\ &+ \chi_i y_{ij} \not{F}_{j} \not{P} + h.c. \\ &+ \left| D_{\mu} \not{P} \right|^2 - V (\not{P}) \end{aligned}$

Gauge interactions are flavour universal

Yukawas Y_{ij}^{u} , Y_{ij}^{d} and Y_{ij}^{ℓ} encode all flavour dynamics

(Masses, mixings and CP violation)

SM quark sector:

6 massive states

flavour violated in charged current interactions $V^{ij}_{
m CKM}W^{\pm}ar{q}_iq_j$

total baryon number is conserved in SM interactions CP violation: δ_{CKM} and θ_{QCD} (not enough to explain BAU from baryogenesis)

CKM paradigm extensively probed:

Meson oscillations & decays, β **decays, CP violation...** Few tensions, CAA, V_{cb} , V_{ub} , ...

SM lepton sector: neutrinos are strictly massless

- Conservation of (total) lepton number and lepton flavour
- Lepton flavour universality only broken by Yukawas
- No intrinsic CPV sources (tiny) lepton EDMs @ 4-loop

Flavours: beyond SM

Strong arguments in **f(l)avour** of **New Physics!**

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe (also some theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:
(c)LFV, lepton flavour universality violation, ...

Flavours: beyond SM

Strong arguments in **f(l)avour** of **New Physics!**

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

(also some theoretical caveats...)

How to unveil the NP model at work?

Test SM symmetries with flavour observables:
(c)LFV, lepton flavour universality violation, ...

ν -oscillations 1st laboratory *evidence* of New Physics!

- New mechanism of mass generation? Majorana fields?
- New sources of CP violation?

Several puzzles remain:

- Absolute mass scale?
- Mass ordering? (NO vs IO)
- CP violation maximal?

Lepton flavour probes of New Physics

Neutrinos oscillate ⇒ neutral lepton flavour violated, neutrinos are massive, new sources of CPV?

Extend SM to accommodate $\nu_{\alpha} \nleftrightarrow \nu_{\beta}$: ad-hoc 3 $\nu_R \Rightarrow$ Dirac masses, "SM_{m_{\nu}}", U_{PMNS} In SM_{m_v}: flavour-universal lepton couplings, lepton number conserved

cLFV possible ... but not observable! BR($\mu \rightarrow e\gamma$) $\propto |\sum U_{\mu i}^* U_{e i} m_{\nu_i}^2 / m_W^2| \simeq 10^{-54}$ (Petcov '77) EDMs still tiny... (2-loop from δ_{CP} , $|d_{\ell}| \sim 10^{-35} ecm$) W^-

 \Rightarrow any **cLFV signal** would imply **non-minimal New Physics!** (Not necessarily related to m_{ν} generation)

Lepton flavours offer a plethora of observables and probes of New Physics

⇒Negative search results: allow to place tight bounds on New Physics

 U_{ik}

 U_{jk}^*

 ν_L

Neutrino mass generation

Mechanisms of m_{ν} generation: account for oscillation data

and ideally address SM issues – BAU (leptogenesis), DM candidates, ...

Many well motivated possibilities, featuring distinct NP states (singlets, triplets)

Realised at very different scales $\Lambda_{\rm EW} \rightarrow \Lambda_{\rm GUT}$

⇒ Expect *very* different **phenomenological impact** Compare "vanilla" type I seesaw vs. low-scale seesaw:

 $O(10^{10-15} \text{ GeV})$ Low scale: $\mathcal{O}(MeV - TeV)$ High scale: Theoretically "natural" $Y^{\nu} \sim 1$ Finetuning of Y^{ν} (or approximate LN conservation) "Vanilla" leptogenesis Leptogenesis possible (resonant, ...) New states within experimental reach! **Decoupled** new states Collider, high-intensities ("leptonic observables")

⇒ low-scale seesaws (and variants): non-decoupled states, modified lepton currents! \Rightarrow rich phenomenology at colliders, high intensities and low energies testability!!

(Also expect tight constraints)

Peculiar cLFV patterns

Disentangle seesaw mass models - more correlations

Models of m_{ν} (and leptonic LFV) predict/accommodate extensive ranges for cLFV...

In the absence of direct NP discovery - **correlations** might allow to disentangle models and provide important **complementary information** to direct searches!

Seesaw realisations: distinctive signatures for numerous cLFV observables ratios of observables to identify seesaw mediators & constrain their masses!

Type I seesaw

Leptogenesis in a nutshell: generate lepton asymmetry \Rightarrow convert into baryon asymmetry (See talk by Stéphane Lavignac and lectures by Julia Harz)

CP-violating out of equilibrium decay \Rightarrow create lepton asymmetry (at a high scale)

$$\epsilon_i^{\alpha} \equiv \frac{\Gamma(N_i \to \phi \ell_{\alpha}) - \Gamma(N_i \to \phi^{\dagger} \bar{\ell}_{\alpha})}{\sum_{\beta} [\Gamma(N_i \to \phi \ell_{\beta}) + \Gamma(N_i \to \phi^{\dagger} \bar{\ell}_{\beta})]} \propto \sum_{j \neq i} \operatorname{Im}[Y_{\alpha i}^{\nu^*} (Y^{\nu^{\dagger}} Y^{\nu})_{ij} Y_{\alpha j}^{\nu}]$$

Type I seesaw

What is the phenomenological impact of these phases?

Leptogenesis in a nutshell: generate lepton asymmetry \Rightarrow convert into baryon asymmetry (See talk by Stéphane Lavignac and lectures by Julia Harz)

CP-violating out of equilibrium decay \Rightarrow create lepton asymmetry (at a high scale)

$$\epsilon_i^{\alpha} \equiv \frac{\Gamma(N_i \to \phi \mathcal{E}_{\alpha}) - \Gamma(N_i \to \phi^{\dagger} \bar{\mathcal{E}}_{\alpha})}{\sum_{\beta} [\Gamma(N_i \to \phi \mathcal{E}_{\beta}) + \Gamma(N_i \to \phi^{\dagger} \bar{\mathcal{E}}_{\beta})]} \propto \sum_{j \neq i} \operatorname{Im}[Y_{\alpha i}^{\nu^*} (Y^{\nu^{\dagger}} Y^{\nu})_{ij} Y_{\alpha j}^{\nu}]$$

LNV and CP violation

CPV phases and **LNV**

If neutrinos are Majorana, total lepton number is violated @ tree-level

 \Rightarrow Expect $0\nu\beta\beta$, LNV meson decays, SS di-lepton tails, ...

Massive (and mixing) neutrinos: new sources of CP violation

CP violating phases are known to play a crucial role:

 M_1

 W^{\pm}

PMNS phases lead to "neck" in $0\nu\beta\beta$, sterile states can interfere in LNV meson decays (Similar interference effects in SS vs OS di-lepton production)

e.g. Abada et al. [2208.13882]

Jonathan Kriewald

14.02.23

JS

 M_2

LNV and CP violation

CPV phases and LNV

If neutrinos are Majorana, total lepton number is violated @ tree-level

 \Rightarrow Expect $0\nu\beta\beta$, LNV meson decays, SS di-lepton tails, ...

A "3+2" neutrino toy model

Simplified "toy models" for phenomenological analyses: SM + $\nu_{\rm s}$

Ad-hoc (low-energy) constructions: SM extended via n_S Majorana massive states No assumption on mechanism of mass generation Well-defined interactions in physical basis

Phenomenological low-energy limit of complete constructions (type I seesaw, ISS, ...)

Hypotheses: 3 active neutrinos + 2 sterile states interaction basis $\leftrightarrow \Rightarrow$ physical basis Left-handed lepton mixing \tilde{U}_{PMNS} 3×3 sub-block, non-unitary! Active-sterile mixing $U_{\alpha i}$ 3×5 rectangular matrix $u_{5\times 5} = \begin{pmatrix} u_{e1} & u_{e2} & u_{e3} & u_{e4} & u_{e5} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & U_{\mu 5} \\ U_{5\times 5} & U_{5\times 5} & U_{5\times 5} & U_{5\times 5} & U_{5\times 5} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & U_{\mu 5} \\ U_{5\times 5} & U_{5\times 5} &$

 $\mathcal{U} = R_{45} R_{35} R_{25} R_{15} R_{34} R_{24} R_{14} R_{23} R_{13} R_{12} \times \text{diag}(1, e^{i\varphi_2}, e^{i\varphi_3}, e^{i\varphi_4}, e^{i\varphi_5})$

Would-be PMNS no longer unitary, leptonic W and Z vertices modified

Physical parameters: 5 masses [3 light (mostly active) & 2 heavier (mostly sterile) states] 10 mixing angles, 10 CPV phases (6 Dirac δ_{ij} , 4 Majorana φ_i)

The impact of CP violating phases

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

 $\blacksquare \text{ Radiative decays: } BR(\mu \to e\gamma) \propto |G_{\gamma}^{\mu e}|^{2}$ $G_{\gamma}^{\mu e} = \sum_{i=4,5} \mathcal{U}_{ei} \mathcal{U}_{\mu i}^{*} G_{\gamma} \left(\frac{m_{N_{i}}^{2}}{m_{W}^{2}}\right)$

Assume (for simplicity & illustrative purposes): $m_4 \approx m_5$ and $\sin \theta_{\alpha 4} \approx \sin \theta_{\alpha 5} \ll 1$ $|G_{\gamma}^{\mu e}|^2 \approx 4 \sin^2 \theta_{e4} \sin^2 \theta_{\mu 4} \cos^2 \left(\frac{\delta_{14} + \delta_{25} - \delta_{15} - \delta_{24}}{2}\right) G_{\gamma} \left(\frac{m_{N_i}^2}{m_W^2}\right)$

 \Rightarrow Radiative decays: rate depends only on Dirac phases; full cancellation for $\Sigma \delta = \pi$ (Other form factors - more involved expressions, depend also on Majorana phases $\varphi_{4,5}$)

The impact of CP violating phases: Dirac

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Abada, JK, Teixeira [2107.06313]

 \Rightarrow Full cancellation of the rates for $\delta_{14} = \pi$, similar results for other (Dirac) phases

The impact of CP violating phases: Majorana

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Abada, JK, Teixeira [2107.06313]

 \Rightarrow Milder dependence, γ -penguin independent of Majorana phases

cLFV & CP violation

Wt

The impact of CP violating phases – breaking correlations

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

 $\mu - e$ conversion in nuclei

cLFV & CP violation

The impact of CP violating phases – breaking correlations

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

WI

Observables dominated by **common topology:** Z-penguins

 $\mu - e$ conversion in nuclei

Jonathan Kriewald

14.02.23

<u>& CP violation</u>

 δ_{34}

ossible, how do we "tag" the presence of CPV?

 $^{-10^{-1}}$ Consider 15+2 toy model (addition of 2 neavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases) Simplified approach: $\sin \theta_{\alpha 4} = \sin \theta_{\alpha 5}$; $m_4 = m_5 = (1, 5, 10)$ TeV

> Impact of Majorana CPV phases (per mile - per cent effect)

Dirac: sensitivity of *A*_{CP} to all phases

- δ_{34} at the source of very large $\mathscr{A}_{CP}(Z \to \mu \tau)$
- \Rightarrow amplified with **increasing** $m_{4.5}$

(Higgs decay asymmetries accidentally negligible)

Abada, JK, Pinsard, Rosauro, Teixeira [2207.10109]

Jonathan Kriewald

IJS

 W^{\pm}

 $- \bar{\ell}_{\beta}$

cLFV & CP violation

CP-asymmetries

Correlations **broken**, large mixing angles still possible, how do we "tag" the presence of **CPV**?

Benchmark points (with different mixing) P_1 (CP-conserving), P_2 (CP-violating) lead to identical cLFV predictions!

Observable	$\mu ightarrow eee$	$\mu - e (\mathrm{Al})$	$ au o \mu \mu \mu$	$Z ightarrow \mu au$
$P_{1,2}$ prediction	$2 imes 10^{-15}$	$5 imes 10^{-14}$	1×10^{-10}	2×10^{-10}

Consider **CP-asymmetries:** $\mathscr{A}_{CP}(Z \to \ell_{\alpha}\ell_{\beta}) = \frac{\Gamma(Z \to \ell_{\alpha}^{+}\ell_{\beta}^{-}) - \Gamma(Z \to \ell_{\alpha}^{-}\ell_{\beta}^{+})}{\Gamma(Z \to \ell_{\alpha}^{+}\ell_{\beta}^{-}) + \Gamma(Z \to \ell_{\alpha}^{-}\ell_{\beta}^{+})}$

IJS

$$\Rightarrow P_2: \mathscr{A}_{CP}(Z \to \mu\tau) \simeq 30\%!$$

Measuring **CP-asymmetries**, i.e. searching for $Z \rightarrow \ell_{\alpha}^{+}\ell_{\beta}^{-}$ and $Z \rightarrow \ell_{\alpha}^{-}\ell_{\beta}^{+}$ independently might allow to constrain **CPV phases** and can help to identify the **source of cLFV!**

CP (T)-asymmetries have also been considered in angular distributions of $\mu \rightarrow eee$ (see Bolton & Petcov [2204.03468])

14.02.23

cLFV & CP violation

Conclusion

Neutrino oscillations are the 1st laboratory evidence of New Physics!

 \Rightarrow massive and oscillating neutrinos open the door to LFV and

new sources of CPV

New CPV phases from HNL play a crucial role in LNV and cLFV processes: ⇒ Interference effects can enhance or suppress rates ⇒ Correlations between observables can be broken

Strong phenomenological impact!

CP violating phases need to be consistently taken into account in analyses of HNL models

See also Ema's poster :)

Conclusion

Neutrino oscillations are the 1st laboratory evidence of New Physics!

 \Rightarrow massive and oscillating neutrinos open the door to LFV and

Backup

cLFV observables across all sectors and energies

Any **cLFV** signal necessarily implies the presence of **New Physics!**

Purely "leptonic cLFV observables: $\ell_{\beta} \rightarrow \ell_{\alpha} \gamma, \ell_{\beta} \rightarrow \ell_{\alpha} \ell_{\gamma} \ell_{\gamma'}$ Most stringent exp. bounds: $BR(\mu \rightarrow e\gamma) \leq 4.2 \times 10^{-13}, BR(\mu \rightarrow eee) \leq 10^{-12}$

Muonic atoms (and bound states): many "nuclear-assisted" cLFV observables e.g. neutrinoless $\mu - e$ conversion ($\mu^-N \rightarrow e^-N$) : $CR(\mu - e, Au) \leq 7 \times 10^{-13}$

Semi-leptonic cLFV τ decays: $\tau \to P\ell', \tau \to V\ell'$; $BR(\tau \to \phi\mu) \lesssim 8.4 \times 10^{-8}$

(Semi-) leptonic cLFV meson decays: $M \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$; $BR(K_L \to \mu^{\pm} e^{\mp}) \lesssim 4.7 \times 10^{-12}$, $BR(B_{(s)} \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \lesssim \mathcal{O}(10^{-5})$ cLFV @ higher energies: $Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $H \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, high- p_T di-lepton tails $pp \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $BR(Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \lesssim \mathcal{O}(10^{-6})$

cLFV observables across all sectors and energies

Low-scale seesaw

Low-scale type I seesaw

Extend SM with 3 "heavy" RH Majorana neutrinos: MeV $\leq m_{N_i} \leq 1 - 100 \text{TeV}$

Masses and mixings: $m_{\nu} \simeq -v^2 Y_{\nu}^T M_N^{-1} Y_{\nu}$, $\mathcal{U}^T \mathcal{M}_{\nu}^{6 \times 6} \mathcal{U} = \operatorname{diag}(m_i)$

$$U_{\nu N} \simeq Y_{\nu}^{\dagger} M_N^{-1} \qquad \mathcal{U} = \begin{pmatrix} \mathcal{U}_{\nu\nu} & U_{\nu N} \\ U_{N\nu} & U_{NN} \end{pmatrix}, \quad \mathcal{U}_{\nu\nu} \simeq (1-\eta) \mathcal{U}_{\text{PMNS}}$$

Heavy states not decoupled \Rightarrow neutral and charged lepton currents modified

 \Rightarrow very rich phenomenology: colliders, **cLFV**, **LNV**, ...

The impact of CP violating phases — no more correlations

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations... Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Observables dominated by common topology: Z-penguins

Also vary mass splitting, all angles/phases independently

⇒ Generic effect of CPV phases!

cLFV: Z and Higgs

cLFV processes: $H \rightarrow \ell_{\alpha}\ell_{\beta}, Z \rightarrow \ell_{\alpha}\ell_{\beta}$ and CPV Dirac / Majorana phases

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases) All angles & CPV phases randomly (independently) varied; non-degenerate heavy states (TeV)

⇒ Important contributions of sterile fermions to cLFV Higgs and Z decays!

 $(H \rightarrow \mu \tau \text{ most promising, but still beyond "observation", even FCC-ee...)}$

Effect of Majorana and Dirac phases on cLFV rates: constructive and destructive interferences Milder loss of correlation with respect to CP conserving case than cLFV leptonic decays

The impact of CP violating phases — no more correlations

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...

Some illustrative benchmark points - CP conserving (P_i) and CPV variants (P'_i)

	$BR(\mu \to e\gamma)$	$BR(\mu \rightarrow 3e)$	$CR(\mu - e, Al)$	$BR(au o 3\mu)$	$BR(Z \to \mu \tau)$
P ₁	$3 imes 10^{-16}$ o	$1 imes 10^{-15}$ V	$9 imes 10^{-15}$ scalar scal	$2 imes 10^{-13}$ o	$3 imes 10^{-12}$ o
P' ₁	$1 imes 10^{-13}$ \checkmark	$2 imes 10^{-14}$ V	$1 imes 10^{-16}$	$1 imes 10^{-10}$ \checkmark	$2 imes 10^{-9}$ 🗸
P_2	$2 imes 10^{-23}$ o	$2 imes 10^{-20}$ o	$2 imes 10^{-19}$ o	1×10^{-10} V	$3 imes 10^{-9}$ scalar scala
P'_2	$6 imes 10^{-14}$ \checkmark	$4 imes 10^{-14}$ \checkmark	$9 imes 10^{-14}$ \checkmark	$8 imes 10^{-11}$ \checkmark	$1 imes 10^{-9}$ 🗸
P ₃	$2 imes 10^{-11}$ X	$3 imes 10^{-10}$ X	$3 imes 10^{-9}$ X	$2 imes 10^{-8}$ scalar scala	$8 imes 10^{-7}$ \checkmark
P'_3	$8 imes 10^{-15}$ o	$1 imes 10^{-14}$ \checkmark	$6 imes 10^{-14}$ \checkmark	$2 imes 10^{-9}$ 🗸	$1 imes 10^{-8}$ \checkmark

Abada, JK, Teixeira [2107.06313]

 \dot{P}_3 : only cLFV τ decays in allowed region; cLFV μ transitions already experimentally disfavoured Regime of large mixing angles excluded?

 P'_3 : all considered cLFV transitions currently allowed, $\mu \rightarrow e\gamma$ beyond sensitivity!

(Non)-observation of cLFV observable(s) \Rightarrow not necessarily disfavour HNL extension!