

(日)

1/22

Measuring δ_{CP} and probing lepton flavour models at ESSnuSB

Monojit Ghosh

Ruđer Bošković Institute Zagreb, Croatia

CP 2023, Les Houches, February 12 - 17

Based on: (i) A. Alekou *et al.*, ESSnuSB CDR, Eur. Phys. J. ST 231 (2022), 3779-3955

(ii) Blennow, Ghosh, Ohlsson and Titov, "Testing Lepton Flavor Models at ESSnuSB," JHEP 07 (2020), 014

The ESSnuSB experiment

Accelarator based long-baseline neutrino experiment

- 538 kt Water Cherenkov far detector
- L = 360 km (alternative 540 km)
- *E* ~ 0.35 GeV
- $\Delta m^2 \sim 10^{-3} \ {
 m eV}^2$
- Unique: Probes Second oscillation maximum

Neutrino Oscillation

- Neutrino oscillation: transition from one flavor to another time=0; time=t; ν_e ; \rightarrow distance=L; \rightarrow ν_e , ν_μ , ν_τ ;
- This is because ν_e , ν_μ , ν_τ are combinations of ν_1 , ν_2 , ν_3 ;

$$|\nu_e\rangle = U_{e1}|\nu_1
angle + U_{e2}|\nu_2
angle + U_{e3}|\nu_3
angle$$

- U is 3×3 matrix
- The transition probability $\nu_{\alpha} \rightarrow \nu_{\beta}$:

$$P_{lphaeta}=|\langle
u_eta|
u_lpha(t)
angle|^2$$

where α,β are e, μ or τ

Neutrino oscillation in 3 generation

Full three flavour vacuum probability formula:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i < j} \operatorname{Re}[U_{\alpha i}^* U_{\beta j}^* U_{\beta i} U_{\alpha j}] \sin^2 \frac{\Delta_{ij} L}{4E} + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}^* U_{\beta j}^* U_{\beta i} U_{\alpha j}] \sin 2 \frac{\Delta_{ij} L}{4E}$$

$$\Delta_{ij} = m_i^2 - m_j^2$$

Parameters of neutrino oscillation:

- Elements of U: Three mixing angles and one Dirac phase $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$
- Two mass squared differences: Appears in $P_{\alpha\beta}$ $\Delta_{21} = m_2^2 - m_1^2$, $\Delta_{31} = m_3^2 - m_1^2$
- L and E

Current status: global

S. K. Agarwalla, R. Kundu, S. Prakash and M. Singh, 2111.11748, N(I)MO: Normal (Inverted) Mass Ordering =

- 360 km: Both 1st and 2nd Maximum
- 540 km: 2nd Maximum
- · Separation between the curves are more in 2nd maximum

Flux

- Calculated at a distance of 100 km
- Different component of the flux

Calculated by "Flux" group in the collaboration

Far detector "particle selection" efficiency

- Overall > 80% for ν_e selection
- Overall > 60% for ν_{μ} selection
- Good background rejection

Calculated by "Detector" group in the collaboration

Red dashed line: Fiducial volume cut

- More events for 360 km
- Major Background: Intrinsic beam background

CP violation sensitivity

イロト イヨト イヨト イヨト

э

10/22

- 360 km gives better sensitivity than 540 km
- Sensitivity depends on systematic

CP precision sensitivity

- 360 km gives better precision than 540 km
- Sensitivity depends on systematic

Probing Lepton Flavour Models at ESSnuSB

Why we want to measure δ_{CP} ?

The simple answer: To understand the theory

Albright 0905.0146

Our Work

Considered a set of models originating from discrete flavour symmetry Test the models with ESSnuSB

S₄ Models

$$G_f = S_4
times CP$$

broken to $__e = Z_3$ and $_{G_{\nu}} = Z_2 imes CP$

	I	II	IV	V
$\sin^2 \theta_{13}$	$\frac{2}{3}\sin^2\theta$	$\frac{2}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$
$\sin^2 \theta_{12}$	$\frac{1}{2+\cos 2\theta}$	$\frac{1}{2+\cos 2\theta}$	$\frac{\cos^2 \theta}{2 + \cos^2 \theta}$	$\frac{\cos^2 \theta}{2 + \cos^2 \theta}$
$\sin^2 heta_{23}$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{\sqrt{3}\sin 2\theta}{2 + \cos 2\theta} \right)$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{2\sqrt{6}\sin 2\theta}{5 + \cos 2\theta} \right)$
$ \sin \delta $	1	0	1	0

broken to $G_e = Z_4$ (or $Z_2 \times Z_2$) and $G_{\nu} = Z_2 \times CP$

	VI-a	VI-b	
$\sin^2 \theta_{13}$	$\frac{1}{4}\left(\sqrt{2}\cos^{2}\theta\right)$	$\left(\operatorname{ss} \frac{\theta}{\theta} + \operatorname{sin} \frac{\theta}{\theta} \right)^2$	
$\sin^2\theta_{12}$	$\frac{2}{5-\cos 2\theta-2\sqrt{2}\sin 2\theta}$		
$\sin^2\theta_{23}$	$\frac{4\sin^2\theta}{5-\cos 2\theta-2\sqrt{2}\sin 2\theta}$	$1 - \frac{4\sin^2\theta}{5-\cos 2\theta - 2\sqrt{2}\sin 2\theta}$	
$\sin\delta$		0	

F. Feruglio, C. Hagedorn and R. Ziegler (2012)

<ロト < 部ト < 目ト < 目ト 目 の Q () 15/22

A_5 Models

$$G_f = A_5
times CP$$

broken to $_{G_e} = Z_3 \; (Z_2 imes Z_2)$ and $_{G_{
u}} = Z_2 imes CP$

	V	VII-a	VII-b	
$\sin^2 \theta_{13}$	$\frac{1-\sin 2\theta}{3}$	$\frac{(\cos \theta - \theta)}{4}$	$\frac{\varphi \sin \theta}{\varphi^2}$	
$\sin^2 \theta_{12}$	$\frac{1}{2+\sin 2\theta}$	$\frac{(\varphi \cos \theta + \sin \theta)^2}{4\varphi^2 - (\cos \theta - \varphi \sin \theta)^2}$		
$\sin^2\theta_{23}$	$\frac{1}{2}$	$\frac{(\varphi^2 \cos \theta - \sin \theta)^2}{4\varphi^2 - (\cos \theta - \varphi \sin \theta)^2}$	$\frac{\varphi^2(\cos\theta + \varphi\sin\theta)^2}{4\varphi^2 - (\cos\theta - \varphi\sin\theta)^2}$	
$ \sin \delta $	1	()	

broken to
$$G_e = Z_5$$
 and $G_\nu = Z_2 \times CP$

	П		IV
$\sin^2 \theta_{13}$	$\frac{3-\varphi}{5}\sin^2\theta$	$\frac{\varphi}{\sqrt{5}}\sin^2\theta$	$\frac{\varphi}{\sqrt{5}} \sin^2 \theta$
$\sin^2 \theta_{12}$	$\frac{2\cos^2\theta}{3+2\varphi+\cos 2\theta}$	$\frac{\frac{4-2\varphi}{5-2\varphi+\cos 2\theta}}{\frac{2}{9}}$	$\frac{4-2\varphi}{5-2\varphi+\cos 2\theta}$
$\sin^2 \theta_{23}$	$\frac{1}{2}$	$\frac{1}{2} - \frac{\sqrt{3-\varphi}\sin 2\theta}{3\varphi-2+\varphi\cos 2\theta}$	$\frac{1}{2}$
$ \sin \delta $	1	0	1

 $arphi = (1+\sqrt{5})/2$ is the golden ratio.

C.-C. Li and G.-J. Ding (2015)

Fitting with current data $\chi^{2}(\theta) = \left[\frac{\sin^{2}\theta_{12}(\theta) - \sin^{2}\theta_{12}}{\sigma(\sin^{2}\theta_{12})}\right]^{2} + \left[\frac{\sin^{2}\theta_{13}(\theta) - \sin^{2}\theta_{13}}{\sigma(\sin^{2}\theta_{13})}\right]^{2} + \left[\frac{\sin^{2}\theta_{23}(\theta) - \sin^{2}\theta_{23}}{\sigma(\sin^{2}\theta_{23})}\right]^{2}$

Model	Case	$\chi^2_{\rm min}$	$ heta_{ m bf}$	$\theta_{3\sigma}$
1.1	VII-b (A_5)	5.37	17.0°	$(16.3^{\circ}, 17.7^{\circ})$
1.2	III (A_5)	5.97	169.9°	$(169.4^{\circ}, 170.4^{\circ})$
1.3	$W(\mathbf{g}_{i})$	7.28	15.0°	$(14.3^{\circ}, 15.7^{\circ})$
	10 (54)		165.0°	$(164.3^{\circ}, 165.7^{\circ})$
1.4	II (S_4)	8.91	169.5°	$(169.0^{\circ}, 170.0^{\circ})$
1.5	IV (A_5)	11.3	10.1°	$(9.6^{\circ}, 10.6^{\circ})$
			169.9°	$(169.4^{\circ}, 170.4^{\circ})$
1.6	I (S_4)	12.6	10.5°	(10.0°, 11.1°)
			169.5°	$(168.9^{\circ}, 170.0^{\circ})$
1.7	VII-a (A_5)	14.8	16.9°	$(16.2^{\circ}, 17.6^{\circ})$
1.8	VI-b (S_4)	18.1	115.3°	$(114.8^{\circ}, 115.8^{\circ})$
1.9	II (A_5)	21.8	16.5°	$(15.7^{\circ}, 17.3^{\circ})$
			163.5°	$(162.7^{\circ}, 164.3^{\circ})$
1.10	$V(S_4)$	36.8	165.2°	$(164.4^{\circ}, 165.9^{\circ})$
1.11	VI-a (S_4)	53.8	115.3°	$(114.8^{\circ}, 115.8^{\circ})$

- Models are ordered as they fit the data
- Models 1.6 1.11 are disallowed the data by 3σ

Predictions

- Grey/White: Disallowed/Allowed region by data
- Prediction of the Models are shown by the horizontal lines
- Models predict very narrow ranges of θ_{23}

Exclusion by ESSnuSB

- Model 1.1 (1.3) predicts $|\sin \delta_{CP}| = 0$ (1)
- If best-fit of δ_{CP} remains close to present best-fit, then Model 1.1 will be excluded
- All θ_{23} values are allowed: Limited θ_{23} sensitivity of ESSnuSB

Testing Two Models with ESSnuSB

- Models 1.3 and 1.5 can be separated from Models 1.1, 1.2 and 1.4
- Because they predict different values of δ_{CP}

Summary

- ESSnuSB: Unique to probe second oscillation maximum
- Good capability to measure δ_{CP}
- Constraint Model parameter space depending on their prediction of $\delta_{\rm CP}$

The Collaboration

Thank You

3

イロト イヨト イヨト イヨト