
Towards the NNBAR Experiment 
at the European Spallation Source

Richard Wagner, ILL - 13.02.2023
on behalf of the NNBAR collaboration

CP2023, Les Houches



Outline
● ESS/HighNESS
● NNBAR – Motivation
● Moderator
● Optics
● Magnetic Shielding
● Detector
● Conclusion



The ESS and the HighNESS Project
● The European Spallation Source (ESS):

– neutron research facility currently under 
construction in Lund, Sweden

– designed to be the most powerful neutron 
source in the world

– An international laboratory with Sweden and 
Denmark as host countries and 11 European 
partner countries

● The HighNESS project 
https://highnessproject.eu/
– Initiated for the design of a second moderator 

system of the ESS
– Funded by the EU and consisting of an 

international consortium of 8 Institutes 
in 7 countries.

Aerial view of the ESS site February 2022 (Image from Perry Nordeng)

For detailed overview see 
Development of a High Intensity Neutron Source at the European Spallation 
Source: The HighNESS project 
V Santoro et al,  2022, https://doi.org/10.48550/arXiv.2204.04051

https://highnessproject.eu/


Motivation for NNBAR Experiment
 Baryon Number Violation (BNV) may be the key to the 

observed matter and antimatter asymmetry 
of baryogenesis

 BNV is a Sakharov condition and needed for theories 
of baryogenesis

 The process n → n with |ΔB| = 2 is one of the 
cleanest channels to observe BNV

 NNBAR experiment is use case for 
fundamental physics at the second moderator beam 
lines at the ESS to 

 Fully utilize the high cold neutron intensities of the 
new LD2 moderator

 Aim to improve 3 orders of magnitude compared to 
previous attempts

 Reference Experiment:
1991 at the ILL 

 Holding the current Limit 
for free neutron-anti neutron oscillation time: 
τ > 0.86 × 108 s 
 
 

From Baldo-Ceolin (1994)
DOI:10.1007/BF01580321
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Monte Carlo Simulation Framework 
Software environment set-up to predict 
neutron flux and backgrounds with 

Interface between different tools:
MCPL File format (Monte Carlo Particle List)



Moderator and Large Beam Port  (LBP)
● Designed in course of the HighNESS-Project
● Optimization criteria:

Intensity of cold neutrons
→ wavelength range 2-20Å

● Liquid deuterium moderator with Beryllium filter

● Extraction through specially build port that's  
three times the size of a standard ESS beam line
for a beam of highest intensity

Intensity at 2m

Moderator
24x45x47cm



Optics I
 Increasing length of experiment not sufficient 

(gain in flight time is compensated by loss in solid angle) 
→ Focusing reflector in (compact) nested arrangement
 Elliptical mirrors (foci located in moderator and 

detector) in planar or cylindrical arrangement
 McStas Simulations to quantify of performance of the 

optical system 
 Optical components for simulation are automatically 

generated from a developed Python Library O.Zimmer,   arXiv:1611.07353
Journal of Neutron Research 20 (2018) 91-98

neutron
s

(uninterrupted) flight time
Figure of Merit (FOM)

Different optics are compared using the quantity:
 Unit is 1991 experiment 



Optics II Find the optimum optic by varying parameters 
(e.g. starting point, # of nested levels, ...)

 Example: Simulations for a 1m long nested Reflector 

5 MW
2 MW



Optics III

FOM: 308 (nested levels=13, 2 MW)

 Example: Simulations for a 10m Nested Reflector 

Collected results for different reflector systems

40m single layer
(baseline)



Magnetic shielding
 
• Shield geometry

• Outer + inner octagon shield from mu-metal 
• Round steel vacuum chamber: between 

shields 
• COMSOL simulations

•  <10 nT 
• Monte Carlo study of inefficiency due to finite 

magnetic field with field map 



Detector Design
 Detect a multi-pion final state 

 Created due to the annihilation of the anti-neutron 
in the carbon target foil

 An annihilation generates (on average)
4-5 pions,  including a π0 which decays immediately 
to 2 γ- rays 

 The invariant mass of the final state matches 2 
neutron masses:  ~1.88 GeV
 characteristic signature for a discovery  

 Requirements for the Detector
 Reconstruction of multi-pion final state
 Invariant mass reconstruction
 Particle identification
 Timing sensitivity to reject cosmics and other out-of-time 

backgrounds



Silicon Trackers
2 layers
6m length
0.3 cm thickness

Scintillator Modules (Calorimeter)
10 layers
3 cm thickness per layer
8 staves per layer

consecutive layers are perpendicular

Time Projection Chamber 
Filling gas: 80% Ar, 20%CO2 
2 different dimensions (x-y):
0.85 m x 1.87 m
2.04 m x 0.85 m
Both: 
2 m length in z-direction

Lead Glass Blocks
8 x 8 cm base area
25 cm height
Oriented towards center of detector

Vacuum tube
1 m inner radius
2 cm wall thickness
6 m tube length

y- di
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n

x-
direction

z-
direction

NNBAR Annihilation Detector – Box Geometry



GEANT4 Simulations

 Exhaustive simulations for the 
development of the detector 
(design, material geometry, 
optimization, cosmic background) 

 Top Left: 
example for the annihilation 
process of an antineutron with 
12C in the target foil

From
Computing and Detector Simulation Framework for the HIBEAM/NNBAR 
Experimental Program at the ESS 
J. Barrow et al, EPJ Web Conf., vol. 251, p. 02062, 2021  

Cosmic muon 
background



Tracker and Calorimeter

 The time projection chambers (TPC) plays an 
important role in particle identification

 Discriminate pions from protons/muons
 Identification by measurement of the  

continuous energy loss dE/dx . 
 Components are concealed by an active cosmic 

muon shield made of scintillators and a passive 
enclosing overburden

Example: Simulated π0 mass reconstruction in the calorimeter

Different
Signatures



Detector simulation 

Geant 4 model designed and reproducing well 
expected distributions

p0  mass reconstruction

Event timing 

Signal

Cosmic

Proton/pion 
separationProton

Pion

Invariant mass

Pion multiplicity 

Cosmic

Signal

Symmetry 14 (2022) 1, 76



The NNBAR collaboration
● Broad international cooperation and support
● ~ 100 researcher from 50 institutes in 8  

countries
● Interdisciplinary team that combine experts 

in neutronics, magnetics, nuclear and 
particle physics.

● Co-spokespersons: G. Brooijmans 
(Columbia), D. Milstead (Stockholm Uni.) 

● Lead scientist: Y. Kamyshkov (Tennessee Uni.) 
● Technical coordinator:  V. Santoro (ESS)

Collaborators are welcome !!

https://nnbar.eu

White Paper
New high-sensitivity searches for neutrons converting into antineutrons 
and/or sterile neutrons at the HIBEAM/NNBAR experiment at the 
European Spallation Source 
A Addazi et al 2021 J. Phys. G: Nucl. Part. Phys. 48 070501

NNBAR/HIBEAM General Meeting
12-13 January 2023, Lund

https://indico.esss.lu.se/event/3129/


Conclusion
● NNBAR experiment will tackle key open questions in modern physics:

– the origin of matter-antimatter asymmetry and 
– the nature of the mysterious dark matter in the universe

● Contribution in course of the HighNESS project 2020-2023:
– Design of the optimal moderator for NNBAR
– Beam line layout
– Reflector studies for neutron transport 
– Magnetic shielding and background simulations
– Detector development and design optimization
– Conceptual design review for the full NNBAR experiment

● Prototype development and construction on-going
● Overall goal: Become the flagship experiment for fundamental physics at the ESS

with 1000 times improved sensitivity on previous attempts



Thank you for your attention!

Credits: Sze Chun Yiu, Kathie Dunne, Jonathan Collin, Gautier Daviau, Matthias Holl, 
Bernhard Meirose, Valentina Santoro, David Milstead, Peter Fierlinger, Nicola Rizzi, 
Luca Zanini, Oliver Zimmer 
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Figure of Merit (FOM)

Intensity ILL experiment

Ratio operating hours per year ILL/ESS

Detector efficiency (50%)

neutrons (uninterrupted) flight time

Different optics are compared using this quantity 
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