

des 2 Infinis

An experimental view on double beta decay searches

Yoann KERMAÏDIC

IJCLab, CNRS/IN2P3 & Université Paris-Saclay, Orsay, France

International Workshop on the Origin of Matter-Antimatter Asymmetry

École de physique des Houches

13 February 2023

Laboratoire de Physique des 2 Infinis

(Vissani, et al.)

Experimental search for creation of matter without antimatter

Yoann KERMAÏDIC

IJCLab, CNRS/IN2P3 & Université Paris-Saclay, Orsay, France

International Workshop on the Origin of Matter-Antimatter Asymmetry

École de physique des Houches

13 February 2023

Two neutrinos double beta decay - $2\nu\beta\beta$

Such process:

- ✓ energetically favored in some isotopes (⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe, ...)
- ✓ is predicted by the SM [Goppert-Mayer 1935]
- ✓ is a strongly suppressed 2nd order weak interaction process
- \checkmark is measured experimentally if background is extremely low

Ultra low background experiment opportunities

• Can look for rare events:

- any shape distortion of the standard $2\nu\beta\beta$ decay spectrum
- unknown very low rate gamma lines
- unexpected time modulation in some rates

• These can be caused by:

- violation of fundamental principles (Lorentz invariance, Pauli Exclusion Principle, CPT symmetry, ...)
- new particles (Sterile neutrinos, WIMPs, axions, ...)
- new interactions (B-violating tri-nucleon decay, charge violating electron decay, ...)

See recent reference in [2202.01787] review

The « ideal » ⁷⁶Ge energy spectrum

E.g. one can expect about 10^{4-5} "2 ν " events datasets (e.g. in ⁷⁶Ge or ¹⁰⁰Mo [<u>1912.07272</u>])

The « ideal » ⁷⁶Ge energy spectrum

E.g. one can expect about 10^{4-5} "2 ν " events datasets (e.g. in ⁷⁶Ge or ¹⁰⁰Mo [<u>1912.07272</u>])

The « ideal » ⁷⁶Ge energy spectrum

E.g. one can expect about 10^{4-5} " 2ν " events datasets (e.g. in ⁷⁶Ge or ¹⁰⁰Mo [<u>1912.07272</u>])

The measured and modelled one

- Precision measurement of the $2\nu\beta\beta$ decay spectral shape possible
- Unknown gamma lines can pop-up

*After LAr veto. The LAr veto cuts any event where a Ge triggered event is accompanied with scintillation light emission in the Lar cryostat 500 keV lower limits driven by ³⁹Ar end-point at 465 keV

CP2023, École de physique des Houches

Liquid argon light collection and

How $2\nu\beta\beta$ decay informs nuclear calculations?

 $T_{1/2}^{-1}$

 $g_A M^{2\nu}$

 $G^{2\nu}$

 m_{ρ}

See review [2009.14451]

$$T_{1/2}^{-1} = G_{2\nu} \cdot g_A^4 \cdot (m_e c^2 \cdot M_{2\nu})^2$$

experimentally probed half-life axial vector coupling cnst = 1.25(?) nuclear matrix element (NME) phase space factor electron mass

 Test nuclear models hypothesis (SSD/HSD) E.g. NEMO-3 [<u>1903.08084</u>]

- Unfortunately, many-body nuclear models are unable to predict the experimentally observed half-life better than 10-25 % (quenching by ~0.75)
- Promising calculations from first principle 'ab-initio' up to A=76 start to be available

New physics from spectral shape

Example: $0\nu\beta\beta J$ decay

- $0\nu\beta\beta$ decay accompanied with the emission of a massless boson, called 'Majoron'
- $\beta\beta$ kinematics + NME modified by *J*, depending on the models (various spectral index)

[2209.01671]

New physics from spectral shape

Example: $0\nu\beta\beta J$ decay

2209.01671

- $0\nu\beta\beta$ decay accompanied with the emission of a massless boson, called 'Majoron'
- $\beta\beta$ kinematics + NME modified by *J*, depending on the models (various spectral index)
- No indication of new physics so far. Competitive isotopes: ⁷⁶Ge, ¹⁰⁰Mo , ¹¹⁶Cd, ¹³⁶Xe

Moving to the $0\nu\beta\beta$ decay search

$$T_{1/2}^{0\nu}{}^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

experimentally probed half-life axial vector coupling cnst = 1.25(?) nuclear matrix element (NME) phase space factor electron mass

 $T_{1/2}^{0\nu}$

 $g_A M^{0\nu}$

 $G^{0\nu}$

 m_e

$$T_{1/2}^{0\nu}{}^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

experimentally probed half-life axial vector coupling cnst = 1.25(?) nuclear matrix element (NME) phase space factor electron mass

Attractive: Minimal model without requiring new particles (mediator = active ν + SM bosons)

 g_A $M^{0\nu}$

 $G^{0\nu}$

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} \left| U_{ei}^2 \right| e^{i\varphi_i} m_i \right|$$

U = PMNS matrix[NuFit]

Relation between nuclear calculation and neutrino oscillation parameters

• Attractive: Minimal model without requiring new particles (mediator = active ν + SM bosons)

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} |U_{ei}^{2}| e^{i\varphi_{i}} m_{i} \right| \qquad \Sigma = \sum_{i=1}^{3} m_{i} \qquad m_{\beta} = \sqrt{\sum |U_{ei}^{2}| m_{i}^{2}} \qquad U = \text{PMNS matrix}_{[\text{NuFit}]}$$

- Direct relationship with the cosmological neutrino mass sum and direct mass measurement
- Rich complementarity in case of non-zero measurement in one of the channel

CP2023, École de physique des Houches

• The current situation on the $0\nu\beta\beta$ decay side

> Start to cover the inverted ordering $m_{\beta\beta}$ band prediction

- Bands width:
 - Green and red dominated by unknown Majorana phases (not osc. params. uncertainty)
 - Blue dominated by NMEs calculations

Side note

- Bands width:
 - Green and red dominated by unknown Majorana phases (not osc. params. uncertainty)
 - Blue dominated by NMEs calculations

Side note

• Next gen $0\nu\beta\beta$ decay experiment reach

 \succ Entirely cover the inverted ordering $m_{\beta\beta}$ band prediction for most NMEs

Neutrinoless double beta decay - $0\nu\beta\beta$

Such process:

- ✓ violates the Lepton Number by 2 units = New Physics! (O(5), O(...))
- ✓ determines the nature of neutrinos: Majorana particle $\nu = \overline{\nu}$ [Valle 1982]
- ✓ gives information on the ν mass via $m_{\beta\beta}$ (light neutrino exchange scenario)
- ✓ has never been observed so far

• $2\nu\beta\beta$ continuum + peak at $Q_{\beta\beta}$

•
$$T_{1/2}^{0\nu} = \ln 2 \cdot \frac{N_A}{m_A} \cdot \epsilon \cdot \epsilon \cdot \frac{1}{N^S}$$

- Key points:
 - \circ Avogadro number: N_A
 - \circ Efficiency [%] x exposure [kg.yr]: ϵ . E
 - Energy resolution [keV]

$$\circ$$
 BI = $\frac{N^B}{\varepsilon \cdot \Delta E}$ [cts/(keV.kg.yr)]

• Topology : • Signal = Single-Site Event (SSE) • Background γ = Multi-Site Event (MSE) α/β = Surface Event

Yoann Kermaïdic, IJCLab, Orsay, France

Figure of merit – discovery potential

« minimal signal strength for which a discovery is expected with 3σ C.L. »

see detailed discussion in: [1705.02996]

Defines the experimental design in terms of

exposure (mass et duration)

background goal (passive/active veto, detector design, analysis techniques)
 CP2023, École de physique des Houches
 Yoann Kermaïdic, IJCLab, Orsay, France

Underground laboratories worldwide

- Underground = passive background suppression for « free »
- Isotopic activation suppression (neutron capture– e.g. $^{76}\text{Ge} + n \rightarrow ^{77}\text{mGe} \rightarrow ^{77}\text{As} + 2.7 \text{ MeV}$)
- Large experimental infrastructure required (shielding, cryostat, instrumentation)
- Size/depth/access compromise taken into account by the collaborations

CP2023, École de physique des Houches

Yoann Kermaïdic, IJCLab, Orsay, France

The experimental landscape

See fresh exhaustive review [2202.01787]

The experimental landscape

See fresh exhaustive review [2202.01787]

Détecteur semi-conducteur GERDA @ LNGS

- ⁷⁶Ge $Q_{\beta\beta} = 2039$ keV $T_{1/2}^{2\nu} \sim 2 \times 10^{21}$ yr
- High detection efficiency de (detector = source)
- Enrichment up to 88% active mass \sim 40 kg
- New detector technology (0.7 kg \rightarrow 3 kg /det.) •
- Excellent energy resolution : < 3 keV FWHM @ $Q_{\beta\beta}$
- "Background-free" experiment at final exposure (LAr veto + PSD)
- Sensitivity $T_{1/2}^{0\nu} > 10^{26}$ yr for the 1st time!
- Final exposure of 100 kg.yr reached in Nov. 2019
- $T_{1/2}^{0\nu} > 1.8 \times 10^{26} \,\mathrm{yr} m_{\beta\beta} < [79 180] \,\mathrm{meV} \,(90\% \,\mathrm{C.\,L.})$
- Successor: LEGEND

[Nature, 2022]

Radiation

Bolometric detector CUORE @ LNGS

- ¹³⁰Te $Q_{\beta\beta} = 2528 \text{ keV} T_{1/2}^{2\nu} \sim 8 \times 10^{20} \text{ yr}$
- 988 TeO₂ crystals with an active mass of 206 kg
- Natural abondance: 35% no enrichment
- Largest mK cryostat in the world
- Very good energy resolution : 7.8 keV FWHM @ $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 0.2 \times 10^{26} \text{ yr} m_{\beta\beta} < [90 305] \text{ meV} (90\% \text{ C. L.})$ with 1038.4 kg.yr
- Stable operation of the cryostat demonstrated in 2021 continue the data taking while waiting for CUPID
- Problematic α/γ background \rightarrow active veto needed (CUPID)

[<u>EPJC, 2022]</u>

Bolometric detector CUPID-Mo @ LSM

- ¹⁰⁰Мо $m{Q}_{m{etaeta}}=3035$ keV $T_{1/2}^{2
 u}\sim7 imes10^{18}$ yr
- 20 Li₂MoO₄ bolometers ran at 20 mK with improved radiopurity w.r.t. CUORE
- Enrichment up to 97% active mass \sim 4 kg
- New veto technology: scintillating photons collection
- Very good energy resolution: 7.4 keV FWHM @ Q_{etaeta}
- $T_{1/2}^{0\nu} > 0.02 \times 10^{26} \text{ yr} m_{\beta\beta} < [280 480] \text{ meV} (90\% \text{ C. L.})$ with a final 1.5 kg.yr (481 days) exposure
- Launching pad for CUPID

Yoann Kermaïdic, IJCLab, Orsay, France

Liquid scintillator detector KamLAND-Zen @ Kamioka [PRL, 2023]

- ¹³⁶Xe $Q_{\beta\beta} = 2458 \text{ keV} T_{1/2}^{2\nu} \sim 2 \times 10^{21} \text{ yr}$
- Large LXe volume within a radiopure balloon immersed within a PMT instrumented liquid scintillator volume
- Enrichment up to 91% active mass \sim 745 kg
- Balloon volume and mass increase x2 in 4 ans
- post-Fukushima ^{110m}Ag contamination removed + overall bkg \div 10
- Low energy resolution: 250 keV FWHM @ $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \,\mathrm{yr} m_{\beta\beta} < [36 156] \,\mathrm{meV} \,(90\% \,\mathrm{C.\,L.})$ with 523.4 days exposure

Liquid Xe TPC detector EXO-200 @ WIPP

- [PRL, 2019]
- 136Xe ${m Q}_{metameta}={m 2458}\,{m keV}$ $T^{2
 u}_{1/2}\sim 2 imes 10^{21}\,{
 m yr}$
- LXe cylindrical *Time Projection Chamber*
- Enrichment up to 81% active mass \sim 100 kg
- Effective scintillation-ionisation correlation
- Event reconstruction (x-y-z) + fiducialization for SSE vs MSE topology
- Low energy resolution: 60 keV FWHM @ $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 0.4 \times 10^{26} \text{ yr} m_{\beta\beta} < [78 239] \text{ meV} (90\% \text{ C. L.})$

CP2023, École de physique des Houches

Experimental state of the art

See fresh exhaustive review [2202.01787]

Experiment	Isotope	Status	Lab	$m_{ m iso}$	$\varepsilon_{ m act}$	$\varepsilon_{ m cont}$	$\varepsilon_{\mathrm{mva}}$	σ	ROI	$\varepsilon_{ m ROI}$	ε	B	λ_b	$T_{1/2}$	m_{etaeta}
				[mol]	[%]	[%]	[%]	$[\mathrm{keV}]$	$[\sigma]$	[%]	$\left[\frac{\mathrm{mol}\cdot\mathrm{yr}}{yr}\right]$	$\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$	$\left[\frac{\text{events}}{\text{yr}}\right]$	[yr]	$[\mathrm{meV}]$
High-purity Ge detectors (Sec. VI.B)															
GERDA-II	76 Ge	completed	LNGS	$4.5 \cdot 10^2$	88	91	79	1.4	-2,2	95	273	$4.2 \cdot 10^{-4}$	$1.1 \cdot 10^{-1}$	$1.2\cdot 10^{26}$	93-222
MJD	76 Ge	completed	SURF	$2.4 \cdot 10^2$	90	91	89	1.1	-2,2	95	166	$2.3 \cdot 10^{-3}$	$3.7 \cdot 10^{-1}$	$5.5\cdot 10^{25}$	140-334
LEGEND-200	76 Ge	$\operatorname{construction}$	LNGS	$2.4 \cdot 10^3$	91	91	90	1.1	-2,2	95	1684	$1.0\cdot 10^{-4}$	$1.7\cdot10^{-1}$	$1.5\cdot 10^{27}$	27-63
LEGEND-1000	76 Ge	proposed		$1.2\cdot 10^4$	92	92	90	1.1	-2,2	95	8736	$4.9\cdot10^{-6}$	$4.3 \cdot 10^{-2}$	$1.3\cdot 10^{28}$	9-21
Variantima providentian abambara (See VIC)															
Xenon time project	136 v	ers (Sec. VI.C)	WIDD	1 0 103	10	100	0.4	01	0.0	05	120	47 10-2	0.1 10+1	0 / 1025	111 477
EAU-200	136 v	completed	WIPP CNOLAD	$1.2 \cdot 10^{-1}$	40	100	84 66	31	-2,2	95	438	4.7.10	Z.1 · 10 ·	$2.4 \cdot 10$	111-477
NEXT 100	136 V -	proposed	SNOLAB	$3.4 \cdot 10$	04	76	00	20	-2,2	95	13700	$4.0 \cdot 10^{-3}$	$5.5 \cdot 10$	$7.5 \cdot 10$	0-27
NEXT-100	136 V o	construction	LSC	$0.4 \cdot 10$ 7 4 10 ³	00	10	49	10	-1.0,1.0	00 65	1 800	$3.9 \cdot 10$	$9.9 \cdot 10$ 7.0 10^{-2}	$7.0 \cdot 10$ 2.2 10^{27}	10 50
Danda V III 200	136 _V	proposed	CIDI	$1.4 \cdot 10$	90 77	09 74	44 65	1.1 91	-0.5,1.7	76	1 009	$4.0 \cdot 10$ 2.0 10^{-3}	$1.2 \cdot 10$	$2.2 \cdot 10$	45 104
FandaA-III-200	136 V o	construction	CJFL	$1.3 \cdot 10$ $4.7 \cdot 10^3$	11	14	00 80	01 05	-1.2,1.2	70 94	374 440	$5.0 \cdot 10$ 1 7 10 ⁻²	$1.1 \cdot 10$ 7 5 · 10 ⁺⁰	$1.0 \cdot 10$ 7.2 10^{25}	40-194 64 977
LZ-nat	136 V o	proposed	SUDE	$4.7 \cdot 10$	14	100	80	20	-1.4,1.4	04 94	440	$1.7 \cdot 10^{-3}$	$7.3 \cdot 10^{+0}$	$7.2 \cdot 10$ $7.1 \cdot 10^{26}$	20.87
Darwin	136 _V o	proposed	SURF	$4.0 \cdot 10$ $2.7 \cdot 10^4$	19	100	00	20	-1.4, 1.4	04 76	4302	$1.7 \cdot 10$ 2 5 · 10 ⁻⁴	$8.0 \cdot 10^{-1}$	$1.1 \cdot 10^{27}$	20-07
Darwiii	Ae	proposed		2.7 · 10	15	100	90	20	-1.2,1.2	70	2312	$3.3 \cdot 10$	8.0 · 10	1.1 · 10	11-12
Large liquid scintill	lators (Sec	. VI .D)													
KLZ-400	¹³⁶ Xe	completed	Kamioka	$2.5 \cdot 10^3$	44	100	97	114	0, 1.4	42	450	$9.9\cdot 10^{-3}$	$4.4\cdot 10^{+0}$	$3.3\cdot 10^{25}$	95-408
KLZ-800	136 Xe	taking data	Kamioka	$5.0\cdot 10^3$	58	100	97	114	0, 1.4	42	1173	$1.4\cdot 10^{-3}$	$1.6\cdot 10^{+0}$	$4.0\cdot 10^{26}$	28-118
KL2Z	136 Xe	proposed	Kamioka	$6.7\cdot 10^3$	80	100	97	60	0, 1.4	42	2176	$3.0\cdot 10^{-4}$	$6.5\cdot 10^{-1}$	$1.1\cdot 10^{27}$	17-71
SNO+I	$^{130}\mathrm{Te}$	construction	SNOLAB	$1.0\cdot 10^4$	20	100	97	80	-0.5, 1.5	62	1232	$7.8\cdot 10^{-3}$	$9.7\cdot 10^{+0}$	$1.8\cdot 10^{26}$	31-144
SNO+II	$^{130}\mathrm{Te}$	proposed	SNOLAB	$5.1\cdot 10^4$	27	100	97	57	-0.5, 1.5	62	8521	$5.7\cdot 10^{-3}$	$4.8\cdot 10^{+1}$	$5.7\cdot 10^{26}$	17-81
••															
Cryogenic calorimeters (Sec. VI.E)															
CUORE	¹³⁰ Te	taking data	LNGS	$1.6 \cdot 10^{3}$	100	88	92	3.2	-1.4,1.4	84	1 088	$9.1 \cdot 10^{-2}$	$9.9 \cdot 10^{+1}$	$5.1 \cdot 10^{25}$	58-270
CUPID-0	⁸² Se	completed	LNGS	$6.2 \cdot 10^{1}$	100	81	86	8.5	-2,2	95	41	$2.8 \cdot 10^{-2}$	$1.2 \cdot 10^{+0}$	$4.4 \cdot 10^{24}$	283-551
CUPID-Mo	¹⁰⁰ Mo	completed	LSM	$2.3 \cdot 10^{1}$	100	76	91	3.2	-2,2	95	15	$1.7 \cdot 10^{-2}$	$2.5 \cdot 10^{-1}$	$1.7 \cdot 10^{24}$	293-500
CROSS	¹⁰⁰ Mo	construction	LSC	$4.8 \cdot 10^{1}$	100	75	90	2.1	-2,2	95	31	$2.5 \cdot 10^{-2}$	$7.6 \cdot 10^{-3}$	$4.9 \cdot 10^{25}$	54-93
CUPID	¹⁰⁰ Mo	proposed	LNGS	$2.5 \cdot 10^{3}$	100	79	90	2.1	-2,2	95	1717	$2.3 \cdot 10^{-4}$	$4.0 \cdot 10^{-1}$	$1.1 \cdot 10^{27}$	12-20
AMORE	¹⁰⁰ Mo	proposed	Yemilab	$1.1 \cdot 10^{3}$	100	82	91	2.1	-2,2	95	760	$2.2 \cdot 10^{-4}$	$1.7 \cdot 10^{-1}$	$6.7 \cdot 10^{26}$	15 - 25
Tracking calorimeters (Sec. VI.F)															
NEMO-3	^{100}Mo	completed	LSM	$6.9\cdot 10^1$	100	100	11	148	-1.6, 1.1	42	3	$9.3\cdot10^{-1}$	$3.0\cdot 10^{+0}$	$5.6\cdot 10^{23}$	505-866
SuperNEMO-D	82 Se	construction	LSM	$8.5 \cdot 10^1$	100	100	28	83	-4.2, 2.4	64	15	$2.1 \cdot 10^{-2}$	$5.0\cdot 10^{-1}$	$8.6\cdot 10^{24}$	201-391
SuperNEMO	82 Se	proposed	LSM	$1.2\cdot 10^3$	100	100	28	72	-4.1, 2.8	54	185	$5.4\cdot 10^{-3}$	$9.8\cdot 10^{-1}$	$7.8\cdot 10^{25}$	67-131

CP2023, École de physique des Houches

Yoann Kermaïdic, IJCLab, Orsay, France

Experimental state of the art

See fresh exhaustive review [2202.01787]

	Isotope	Status	Lab	$m_{ m iso}$	$\varepsilon_{ m act}$	$\varepsilon_{ m cont}$	$\varepsilon_{\mathrm{mva}}$	σ	ROI	$\varepsilon_{ m ROI}$	ε	B	λ_b	$T_{1/2}$	m_{etaeta}
Experiment				[mol]	[%]	[%]	[%]	$[\mathrm{keV}]$	$[\sigma]$	[%]	$\left[\frac{\mathrm{mol}\cdot\mathrm{yr}}{yr}\right]$	$\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$	$\left[\frac{\text{events}}{\text{yr}}\right]$	[yr]	$[\mathrm{meV}]$
High-purity Ge detectors (Sec. VI.B)															
GERDA-II	$^{76}\mathrm{Ge}$	completed	LNGS	$4.5 \cdot 10^2$	88	91	79	1.4	-2,2	95	273	$4.2 \cdot 10^{-4}$	$1.1 \cdot 10^{-1}$	$1.2\cdot 10^{26}$	93-222
MJD	$^{76}\mathrm{Ge}$	completed	SURF	$2.4 \cdot 10^2$	90	91	89	1.1	-2,2	95	166	$2.3\cdot 10^{-3}$	$3.7 \cdot 10^{-1}$	$5.5\cdot 10^{25}$	140 - 334
LEGEND-200	76 Ge	$\operatorname{construction}$	LNGS	$2.4\cdot 10^3$	91	91	90	1.1	-2,2	95	1684	$1.0\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$1.5\cdot 10^{27}$	27-63
LEGEND-1000	76 Ge	proposed		$1.2 \cdot 10^4$	92	92	90	1.1	-2,2	95	8 7 3 6	$4.9\cdot 10^{-6}$	$4.3 \cdot 10^{-2}$	$1.3\cdot 10^{28}$	9-21
Xenon time projection chambers (Sec. VI.C)															
EXO-200	136 Xe	completed	WIPP	$1.2 \cdot 10^{3}$	46	100	84	31	-2,2	95	438	$4.7 \cdot 10^{-2}$	$2.1 \cdot 10^{+1}$	$2.4 \cdot 10^{25}$	111 - 477
nEXO	136 Xe	proposed	SNOLAB	$3.4\cdot 10^4$	64	100	66	20	-2,2	95	13700	$4.0\cdot 10^{-5}$	$5.5\cdot10^{-1}$	$7.5\cdot 10^{27}$	6 - 27
NEXT-100	136 Xe	$\operatorname{construction}$	LSC	$6.4 \cdot 10^2$	88	76	49	10	-1.0, 1.8	80	167	$5.9\cdot10^{-3}$	$9.9\cdot10^{-1}$	$7.0\cdot 10^{25}$	66 - 281
NEXT-HD	136 Xe	proposed		$7.4 \cdot 10^3$	95	89	44	7.7	-0.5, 1.7	65	1809	$4.0\cdot 10^{-5}$	$7.2\cdot10^{-2}$	$2.2\cdot 10^{27}$	12 - 50
PandaX-III-200	136 Xe	$\operatorname{construction}$	CJPL	$1.3 \cdot 10^3$	77	74	65	31	-1.2, 1.2	76	374	$3.0 \cdot 10^{-3}$	$1.1\cdot 10^{+0}$	$1.5 \cdot 10^{26}$	45 - 194
LZ-nat	136 Xe	$\operatorname{construction}$	SURF	$4.7 \cdot 10^3$	14	100	80	25	-1.4, 1.4	84	440	$1.7\cdot 10^{-2}$	$7.5\cdot 10^{+0}$	$7.2\cdot 10^{25}$	64 - 277
LZ-enr	136 Xe	proposed	SURF	$4.6 \cdot 10^4$	14	100	80	25	-1.4, 1.4	84	4302	$1.7\cdot 10^{-3}$	$7.3\cdot 10^{+0}$	$7.1\cdot 10^{26}$	20-87
Darwin	136 Xe	proposed		$2.7\cdot 10^4$	13	100	90	20	-1.2, 1.2	76	2312	$3.5\cdot 10^{-4}$	$8.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	17-72
Large liquid scintill	ators (Sec	. VI.D)													
KLZ-400	136 Xe	completed	Kamioka	$2.5\cdot 10^3$	44	100	97	114	0, 1.4	42	450	$9.9\cdot10^{-3}$	$4.4\cdot 10^{+0}$	$3.3\cdot 10^{25}$	95-408
KLZ-800	136 Xe	taking data	Kamioka	$5.0\cdot 10^3$	58	100	97	114	0, 1.4	42	1173	$1.4\cdot 10^{-3}$	$1.6\cdot 10^{+0}$	$4.0\cdot 10^{26}$	28 - 118
KL2Z	136 Xe	proposed	Kamioka	$6.7\cdot 10^3$	80	100	97	60	0, 1.4	42	2176	$3.0\cdot 10^{-4}$	$6.5\cdot10^{-1}$	$1.1\cdot 10^{27}$	17 - 71
SNO+I	$^{130}\mathrm{Te}$	construction	SNOLAB	$1.0\cdot 10^4$	20	100	97	80	-0.5, 1.5	62	1232	$7.8\cdot 10^{-3}$	$9.7\cdot 10^{+0}$	$1.8\cdot 10^{26}$	31 - 144
SNO+II	$^{130}\mathrm{Te}$	proposed	SNOLAB	$5.1\cdot 10^4$	27	100	97	57	-0.5, 1.5	62	8521	$5.7\cdot 10^{-3}$	$4.8\cdot10^{+1}$	$5.7\cdot 10^{26}$	17-81
Cryogenic calorimeters (Sec. VI.E)															
CUORE	$^{130}\mathrm{Te}$	taking data	LNGS	$1.6\cdot 10^3$	100	88	92	3.2	-1.4,1.4	84	1088	$9.1\cdot 10^{-2}$	$9.9\cdot10^{+1}$	$5.1\cdot 10^{25}$	58 - 270
CUPID-0	82 Se	completed	LNGS	$6.2\cdot 10^1$	100	81	86	8.5	-2,2	95	41	$2.8\cdot 10^{-2}$	$1.2\cdot 10^{+0}$	$4.4\cdot 10^{24}$	283-551
CUPID-Mo	$^{100}\mathrm{Mo}$	completed	LSM	$2.3\cdot 10^1$	100	76	91	3.2	-2,2	95	15	$1.7\cdot 10^{-2}$	$2.5 \cdot 10^{-1}$	$1.7\cdot 10^{24}$	293-500
CROSS	$^{100}\mathrm{Mo}$	construction	LSC	$4.8\cdot 10^1$	100	75	90	2.1	-2,2	95	31	$2.5\cdot 10^{-2}$	$7.6\cdot 10^{-3}$	$4.9\cdot 10^{25}$	54-93
CUPID	100 Mo	proposed	LNGS	$2.5\cdot 10^3$	100	79	90	2.1	-2,2	95	1717	$2.3\cdot 10^{-4}$	$4.0\cdot 10^{-1}$	$1.1\cdot 10^{27}$	12-20
AMORE	$^{100}\mathrm{Mo}$	proposed	Yemilab	$1.1\cdot 10^3$	100	82	91	2.1	-2,2	95	760	$2.2\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$6.7\cdot 10^{26}$	15 - 25
Tracking calorimeters (Sec. VI.F)															
NEMO-3	100 Mo	completed	LSM	$6.9\cdot 10^1$	100	100	11	148	-1.6, 1.1	42	3	$9.3\cdot 10^{-1}$	$3.0\cdot 10^{+0}$	$5.6\cdot 10^{23}$	505-866
SuperNEMO-D	82 Se	construction	LSM	$8.5 \cdot 10^1$	100	100	28	83	-4.2, 2.4	64	15	$2.1 \cdot 10^{-2}$	$5.0\cdot 10^{-1}$	$8.6\cdot 10^{24}$	201-391
SuperNEMO	82 Se	proposed	LSM	$1.2\cdot 10^3$	100	100	28	72	-4.1, 2.8	54	185	$5.4\cdot 10^{-3}$	$9.8\cdot 10^{-1}$	$7.8\cdot 10^{25}$	67-131

CP2023, École de physique des Houches

Yoann Kermaïdic, IJCLab, Orsay, France

Future of double-beta decay search

• Sensitivity goals: Cover $m_{\beta\beta} \sim 17$ meV (IH)

***[cps**/(**FWHM**. **t**. **yr**)] ** + KamLAND2-Zen + NEXT-HD

 Three major experiment in terms of mass/funding but many other alternative technology under development

Candidate underground labs

• Europe:

- Feasibility studies of LEGEND-1000 at LNGS
- LSC not deep enough
- $\,\circ\,$ Not enough space at LSM

• North America:

- Preference for SNOLAB in Canada (SURF not retained)
- Active mine new experimental hall dedicated to double-beta decay

 Large hosting capacity at CJPL experimental hall built for CDEX (dark matter)

Selection process in the US

- Three experiments seriously considered
 - LEGEND-1k ⁷⁶Ge after LEGEND-200
 - o nEXO ¹³⁶Xe after EXO-200
 - CUPID 100 Mo after CUORE
- Support document: « pCDR » (pre Conceptual Design Report)
 - LEGEND-1k : [2107.11462]
 - o nEXO : [<u>1805.11142</u>] / [<u>2106.16243</u>]
 - CUPID : [1907.09376] / [2203.08386]
- Budget: Order of magnitude is ~[60-400] M\$ [see DOE statement]
- Selection : unknown date interplay with EU funding strategy

CP2023, École de physique des Houches

Yoann Kermaïdic, IJCLab, Orsay, France

Sensitivity comparison with other isotopes

Strength of the LEGEND-1000 proposal:

- Quasi-background free at full exposure
- No known peaks near $Q_{\beta\beta}$

Strength of the nEXO proposal:

- Exposure (5 t) + fiducialization
- Promising ¹³⁶Ba daughter tagging(?)

Strength of the CUPID proposal:

- Existing cryogenic infrastructure
- Demonstrated bkg reduction technique w.r.t. CUORE

CP2023, École de physique des Houches

Yoann Kermaïdic, IJCLab, Orsay, France

Conclusions

 Double beta decay experiments are probing particle physics symmetries with highly sensitive detectors

We may rather refer them as 'experiment searching for creation of matter without antimatter'

• Neutrinoless double beta decay community is in an exciting phase!

- > Many highly sensitive experiments have recently delivered results
- > There is a roadmap to increase sensitivities by two order of magnitude on $T_{1/2}^{0\nu}$ Future projects rely on different isotopes

• The community is moving toward ton-scale projects

- with ultra-low background, high energy resolution
- > offering many possibility to probe rare events connected to new physics

Can a neutrino be its own antiparticle?

FIG. 2 Artistic illustration of the relation between the neutrino and antineutrino helicity, which is given by the projection of the spin (red arrow) onto the momentum (green arrow). The helicity distinguishes neutrinos from antineutrinos in the ultra-relativistic limit (top panel). However, in the rest frame the neutrino and antineutrino are two spin states of the same particle (lower panel). Image courtesy of Laura Manenti.

1. Majorana neutrinos: a bridge between matter and antimatter

Majorana's neutrinos are both particles and antiparticles. This often-heard statement is far from being trivial. To clarify its meaning, it is useful to remember that neutrinos are particles with spin 1/2, i.e. fermions. Fermions constitute matter (and antimatter), whereas bosons constitute forces. In the context of the Standard Model of Glashow, Weinberg and Salam, neutrinos along with all other particles are distinct from their antiparticles. Such a difference is evident for charged fermions, but what about for neutral ones?

In fact, Standard-Model neutrinos are neutral. They have hypercharge but this is broken spontaneously, leaving only two ways to distinguish neutrinos from antineutrinos. The first way concerns the helicity of the particle: it is negative for the neutrino and positive for the antineutrino. The second way is based on the charged Majorana neutrinos: a bridge between matter and antimatter [2202.01787]

(Vissani, et al.)

lepton that accompanies charged lepton interactions: for example, in all observed β^{\mp} -decays, the (anti)neutrino is co-produced with a particle of (negative) positive charge.

The neutrino's helicity is a consequence of the chiral structure of the weak interactions — formally corresponding to the presence of the P_L projector in the charged interactions — but only provided that the neutrino mass is exactly zero. If neutrinos are massive, helicity coincides with chirality only in the ultra-relativistic limit. All experimental observations related to weak interactions have been made, and can be made, only on ultra-relativistic neutrinos. However, as a thought experiment, we can consider observing a neutrino and an antineutrino in their rest frame, whose existence is guaranteed by their tiny masses measured through oscillation experiments. In this frame, the momentum and helicity of the neutrino and antineutrino are both zero and, in the absence of additional quantum numbers, the two particles can differ only by the orientation of their spin. Therefore, symmetry under rotations implies that the two states must be the same particle. In conclusion, the structure of the Standard Model, together with the hypothesis that neutrinos have mass, suggests that the neutrino and the antineutrino are the very same particle in the rest frame. The point is summarised graphically in Fig. 2 and discussed also by Dell'Oro et al. (2016).

Technological risk evaluation

Large gap in exposure (horizontal axis)

= potential unknowns on the experiment functioning / long term robustness / ...

- Large gap on the background (vertical axis)
 - = potential unknowns on the radiopurity / ignored background components / ...

CP2023, École de physique des Houches

Yoann Kermaïdic, IJCLab, Orsay, France

Nuclear Matrix Element status

New NSM, IBM and QRPA calculations have been performed in 2020 Ab-initio (first principles) calculations now available for ⁷⁶Ge and ⁸²Se!