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 Assuming MFV, LFU and naive mass scaling of the electron EDM → 
 Long-standing muon (g-2) tension →  hints of New Physics involving 

the muon.
 The only EDM we can probe on the bare fundamental particle.
 The current experimental limit on the muon EDM is ~10-19 e cm*.

EDM of the muon
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*arXiv:2103.11769 [hep-ex]

*Bennet et al. 
PhysRevD.73.072003 (2006)



Sensitivity from (g-2) experiments
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The frozen spin technique*
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FNAL & JPARC Frozen spin at PSI: 
precursor: dμ = 3x10-21 e.cm
final: dμ = 6x10-23 e.cm

 

𝜎(𝑑𝜇)≈10− 21𝑒cm

*Farley et al, PRL93 042001 (2004)

𝑅=7.114m

g-2 term EDM term 



The experiment in a nutshell: video




Frozen spin technique in a nutshell

g-2 term EDM term 

 The angular velocity of the spin precession 
is given by the Thomas-BMT equation → 

 By applying an appropriate radial E-field to 
the muon we negate the aB term.

 EDM is proportional to angular velocity of 
the spin around the β×B axis (radial).

 To measure the muon EDM we need to 
measure the spin direction as a function of 
time. 




 For high positron energies – preferentially emitted in the 
direction of the muon spin

 Energy spectrum and directional asymmetry as a function of 
the fractional energy x = E/Emax:

Angular distribution – muon rest frame
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Angular distribution – g-2 experiments
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FNAL g-2 experiment design document page 81:

 For high momentum muons the angular distribution is Lorentz boosted along 
the momentum.

 For large boosts practically all decay positrons are emitted in the forward 
direction – no directional asymmetry.

 Dependence of the number of decay positrons at a given enrgy on the spin.



 Detecting the number of positrons with energy above a threshold leads to the 
‘wiggle plot’:

Angular distribution – g-2 experiments
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 The first stage muon EDM – 28 MeV/c surface muons.

 Both directional and energy dependence on 
the spin direction.

 Precession due to the AMM can be
measured using intensity asymmetry.

– used to tune the frozen spin.

 Precession due to EDM can be measured
from the direction of emitted positrons:

– up-down asymmetry.

Angular distribution – muon EDM experiment
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 Some asymmetry could still be observed due to systematic effects

– effects that lead to a real or apparent precession of the spin around the 
radial axis that are not related to the EDM 

 Types of systematic effects:

 Early to late variation of detection efficiency of the EDM detectors (apparent)
 Coupling of the anomalous magnetic moment with the EM fields of the 

experimental setup (real)
● Dynamical phase

● Geometric phase

Systematic effects
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Early-to-late detection efficiency changes
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 Strong pulsed magnetic field → eddy 
currents, noise, heat in detectors and 
associated electronics.

 Time-dependent changes in the detection 
efficiency of a set of detectors will be seen 
as a false EDM signal.

 Systematics can be studied by decoupling 
the pulse time from the stopping time.
(stop muons in a target and study the detector response)

y

Nu=εu N Nd=εd N

EDMdetectors

ε=ε(t)



 Main EM fields in the experiment:

– Main solenoid

– Coaxial electric freeze field

– Weakly focusing field

– Magnetic kick (time varying)

 Rotations that could mimic the EDM:

– Radial around x

– Azimutal around z
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Coupling of the MDM to EM fields

Bx

y



 Net B-field component along the momentum Bz → non-zero if there is 
current flowing through the muon orbit

 Net radial B-field component Bx → can be non-zero due to residual fields 
from the magnetic kick

 Radial magnetic field in the reference frame of the muon due to a β⨯E term 
→ non-zero if there is E-field prependicular to the muon orbit

Average over all orbits
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 If we take the average over all muon orbits the periodic oscillations disappear 
and we are left with three terms that could lead to a false EDM signal:
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 Limit on the average Ey field as a 
function of the muon velocity shown 
as a fraction of the radial component

 Effect cancels if particles are injected 
alternatively CW and CCW and 
subtracting counts in the detectors

 CW and CCW orbit directions are done 
by switching the B-field direction.

Constraints on the average horizontal E-field
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 The geometric phase is a phase difference acquired 
over the course of a cycle in parameter space.

 Parallel transport of a vector around a closed loop.

 The angle by which it twists is proportional to the 
area inside the loop:

– In classical parallel transport it’s equal.

– In quantum mechanics it’s -½ (fermions).

 If oscillations around two axes are combined we can 
observe a phase shift (false EDM)
even if the average of the oscillations is zero.

Geometric (Berry) phase
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 For two oscillations have the same frequency the Berry phase is:

 The motion of the spin in this case is an ellipse with eccentricity defined by 
the phase difference β0 between oscillations

– no phase difference: ellipse looks like a line

– π/2 phase difference: ellipse is a circle and maximum area 

Calculation of Berry phases
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 Spin precession due to misalignment of the radial E-field:

– longitudinal oscillations due to stronger and weaker freeze field 
(cyclotron frequency)

– radial oscillations due to longitudinal E-field oscillating between 
upstream and downstream directions (cyclotron frequency)

Example of Berry phases
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Tilted and shifted E-field with respect to the 
center of the muon orbit



 Plans to demonstrate the operation of all critical components and go 
to 3x10-21 e.cm until 2026.

 Final target 6x10-23 e.cm – large improvement over the current limits 
due to the frozen spin technique.

 Groundwork for the analysis of systematic effects in the experiment 
has been laid.

Conclusions
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Thank you for the attention!

muonEDM 
collaboration kick-off 
meeting May 2022 
(Pisa, Italy) → 



 Spin precesses around axis x with amplitude C1 and frequency Ωx, and around 
y with amplitude C2 and frequency Ωy. Phase difference between the two β0.

 The movement of the spin encloses an area A on some abstract surface. 
The area can be calculated from Green’s theorem:

 The Berry phase as a function time is then:

Calculation of Berry phases
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 Non-zero average Bz field if there is 
electric current flowing through the area 
enclosed by the muon orbit

 Write net current!

 From Biot-Savart’s law we can give a 
limit on the systematics due to such 
current

 Assuming non-insulated wire at the 
center of the orbit:

 Precursor: I < 250 mA

 Final experiment: I < 40 mA

Limit on the B-field parallel to the momentum
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 Limit on the kicker field decay time 
with relation to the injection angle

 Assumptions:

 half-sine kicker field intensity

 end of the kick is considered to be
at the 10% from maximum livel

 exponential decay of the ringing
signal with time constant τB

 the limit is such that the influence 
of the residual field is less than a given de at ~400 ns time

 Note: the constraint is lower for later times and stronger for earlier times

Limit on the radial B-field
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