

Philipp Schmidt-Wellenburg :: Scientist :: Paul Scherrer Institute

Storage ring searches for EDM of charged particle

CP2023 in Les Houches

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Swiss National Science Foundation

Complications when using atoms and molecules

In general, when measuring the **Fundamental theory** $\overline{\theta}$ CKM SUSY Multi Higgs LR-symmetry etc. FDM of an atom or molecule we face the situation that a possible $C_{ggg}, C_{qqqq}(1,8), C_{qH} \quad d_{ud} \quad \widetilde{d}_{ud}$ semileptonic Wilson coefficients d_{μ} , $d_{ au}$ signal could be generated by many different operators at higher energy. $g_{\pi}^{0} g_{\pi}^{1} (g_{\pi}^{2})$ $C_T C_S^{0(1)}$ d_n, d_p Low energy parameters In general: $d_{\rm A} = \sum_i \alpha_{ij} C_j$ *d,t,* ³He Schiff moment Nucleus level where α_{ij} is the sensitivity of the specific system to the CP violating Diamagnetic Paramagnetic operator C_i . Atom/molecule level Solid state

[from Chupp et al., RMP91, 015001,2019]

A not so brief history of EDM searches

*Bennett et al., PRD80(2009)052008

PAUL SCHERRER INSTITUT Only limits:							
Particle	Limit /ecm 90%CL	System	Reference				
n	1.8×10^{-26}	Ultracold neutrons	[Abel et al., PRL124, 081808, 2020]				
Hg	6.3×10^{-30}	Hg vapor	[Graner et al., PRL116, 161601, 2016]				
¢⊳p	2.0×10^{-25}	in S S					
∜⊳n	1.2×10^{-26}	sum othe zero					
₿e	6.0×10^{-28}	all					
HfF+			[Roussy et al., arXiv:2212.11841v3]				
₿e	4.1×10^{-30}	Assuming all others zero					
Muon	1.5×10^{-19}	Storage ring (g-2)	[Bennett et al, PRD80, 052008, 2009]				
¹²⁹ Xe	1.5×10^{-19}	³ He- Comagnetometer	[<u>Sachdeva et al., PRL123,143003, 2019]</u> [<u>Allmendinger et al, PRA100, 022505, 2019]</u>				
¢⊳p	3.2×10^{-22}	ing Brook					
∜⊳n	6.4×10^{-23}	sum othe zero					
⊌e	1.9×10^{-24}	all As					

What can we do to measure only the EDM of the particle?

 $(\mu \vec{B} + \vec{d} \vec{E}) \times \vec{I}$

 \overline{dt}

The generic idea of <u>all</u> EDM experiments:

Preparation of a spin polarized particle ensemble .

Interaction with electric field

Measurement of evolution of angular momentum .

CP violation & edm

Lepton spin precession and motion in a B-field

Relativistic lepton spin precession in a perpendicular magnetic field

Cyclotron frequency of a lepton in a perpendicular magnetic field

Measurement of the anomalous magnetic moment by observing relative precession

$$\vec{\omega}_C = \frac{q\vec{B}}{\gamma m}$$

$$\vec{\omega}_a = \vec{\omega}_C - \vec{\omega}_L = -\frac{q}{m}a\vec{B}$$

$$\vec{\omega}_L = \frac{gq\vec{B}}{2m} + (1-\gamma)\frac{q\vec{B}}{\gamma m} = \frac{aq\vec{B}}{m} + \frac{q\vec{B}}{\gamma m}$$

$$a = \frac{g-2}{2}$$

0

Spin precession in \vec{B} and \vec{E} fields of a storage rings:

$$\vec{\omega}_a = -\frac{q}{m} \left[a\vec{B} + \left(\frac{1}{1-\gamma} - a\right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Spin precession in orbital plane

$$\vec{\omega}_d = -\frac{q}{m}\frac{\eta}{2}\left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}\right)$$

Spin precession out of orbital plane: "EDM signal"

 $\left(a = \frac{g-2}{2}\right)$

Sum $\vec{\omega} = \vec{\omega}_a + \vec{\omega}_d$ dilutes the EDM signal and increases systematic effects

$$\vec{\vec{z}} = \vec{\beta} \times \vec{B} \approx O(1 \text{GV/m})$$

Muon dipole moments and frequencies

$$\vec{\omega} = \vec{\omega}_L - \vec{\omega}_c = -\frac{q}{m} \left[a\vec{B} + \left(\frac{1}{\gamma^2 - 1} - a\right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

The g-2 experiment: measuring with magic momentum

$$\begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = -\frac{q}{m} \begin{bmatrix} \begin{pmatrix} 0 \\ aB_y \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & a - a\gamma \\ c(1 - \gamma) \end{pmatrix} \begin{pmatrix} -\beta_z E_y \\ \beta_z E_x \\ 0 \end{pmatrix} + \frac{\eta_d}{2c} \begin{pmatrix} E_x - \nu_z B_y \\ E_y \\ E_z \end{pmatrix} \end{bmatrix}$$

- Run at "magic-moment " $p_{\mu} = 3.1 \text{GeV}/c$ \rightarrow can use E-fields to steer the beam
- Assume η small
 - ightarrow direct access to a_{μ} from

$$\vec{\omega}_a = -qa\vec{B}/m$$

• An EDM signal would be visible as up/down oscillation

[*Chislett et al., EPJConf. 118 01005(2016), Abi et al., PRL126 141801(2021), **Abe et al., PTEP053C02 (2019)]

Statistical sensitivity of the g-2 EDM extraction

$$A_{\nu}(t) = \frac{N_{u}(t) - N_{d}(t)}{N_{u}(t) + N_{d}(t)}$$

$$A_{\nu}(t) = \zeta \cdot \ell \cdot \sin(\omega t + \phi)$$

$$dA = \frac{2N_{n}N_{d}}{(N_{u} + N_{d})^{2}} \sqrt{\frac{1}{N_{u}} + \frac{1}{N_{d}}} \approx \sqrt{\frac{1}{N_{tot}}}$$

$$\frac{dA}{d\zeta} = \ell \cdot \sin(\omega t + \phi)$$

$$d\zeta = \frac{1}{\ell \sin(\omega t + \phi)\sqrt{N_{tot}}}$$

$$\zeta = \operatorname{atan}\left(\frac{\omega_{e}}{\omega_{a}}\right) = \operatorname{atan}\left(\frac{\eta\beta}{2a}\right) \approx \frac{\eta\beta}{2a}$$

$$\zeta = \operatorname{atan}\left(\frac{\omega_{e}}{\omega_{a}}\right) = \operatorname{atan}\left(\frac{\eta\beta}{2a}\right) \approx \frac{\eta\beta}{2a}$$

$$A_{\nu}: \text{ amplitude in detector}$$

$$\ell: \text{ distance between decay and detector}$$

$$\frac{dA}{d\zeta} = \ell \cdot \sin(\omega t + \phi)$$

$$\tau \text{ ime averaged sine}$$

$$\sigma(\eta) = \frac{2a\sqrt{2}}{\beta\ell\sqrt{N}}$$

$$Statistical sensitivity depends only on \sqrt{N}$$

Statistical sensitivity of the frozen spin technique

$$A_{v}(t) = \frac{N_{u}(t) - N_{d}(t)}{N_{u}(t) + N_{d}(t)}$$
$$A_{v}(t) = \alpha P \sin\left(\frac{2d_{\mu}Et}{\hbar} + \phi\right)$$

$$\mathrm{d}A = \frac{2N_nN_d}{(N_u + N_d)^2} \sqrt{\frac{1}{N_u} + \frac{1}{N_d}} \approx \sqrt{\frac{1}{N_{\mathrm{tot}}}}$$

 A_v : amplitude in detector P: initial polarization α : analysis power t: mean observation time

$$\sigma(d_{\mu}) = \frac{\hbar}{2PE\sqrt{N}t\alpha}$$

$$\left. \frac{\mathrm{d}A}{\mathrm{d}d_{\mu}} \right|_{max} = \frac{2\alpha P d_{\mu} E t}{\hbar}$$

Statistical sensitivity increases linear with E-field and observation time

Two options to cancel g-2 signal:

- Select radial electric field E_f to cancel g-2 term
- All electric storage ring and magic momentum

$$a\vec{B} = \left(a - \frac{1}{\gamma^2 - 1}\right)\frac{\vec{\beta} \times \vec{E}}{c}$$
$$E_f = \frac{aBc\beta}{(a\beta^2 - (1 - \beta^2))}$$

$$E_f \cong -aBc\beta\gamma^2$$

Two options to cancel g-2 signal:

- Select radial electric field E_f to cancel g-2 term
- All electric storage ring and magic momentum

Proton EDM search with $a_P = 1.793$

$$\vec{B} = 0$$

 $\gamma = \sqrt{(1+a)/a} \approx 1.25$

 $p_{\text{magic}} = 0.7 \text{ GeV}/c$

When to use which variant?

Frozen-spin sensitivity:

$$\zeta = \frac{E_x + v_z B_y}{E_x} = \frac{a+1}{a\gamma^2}$$

Particle	μ/μ_N	а	$\zeta \gamma^2$	
μ	-8.891	0.001166	858	
p	-1.913	1.793	1.56	
² H	0.857	-0.143	-5.99	
³ Н	2.979	7.918	1.13	
³ He	-2.128	-4.184	0.76	

- The higher $\zeta \gamma^2$ the better the frozen-spin sensitivity
- Negaitve *a* does not permit a "magic momentum" scheme

Muon polarization and analysis

- Weak decay $\pi^+ \rightarrow \mu^+ + \bar{\nu}_{\mu}$ result in $P_{\mu} \approx 95\%$ for $p_{\pi} \sim 220 \text{MeV}/c^2$ backward decay in $P_{\mu} \approx 95\%$
- Weak decay $\mu^+ \rightarrow e^+ + \bar{\nu}_e + \nu_\mu$ results in decay asymmetry $\bar{\alpha} \approx 0.3$
- Detection of e^+ of decay (for EDM vertical resolution)

The general experimental idea for a muon EDM

- If the EDM ≠ 0, then there will be a vertical precession out of the plane of the orbit
 - An asymmetry increasing with time will be observed recording decay positrons
- If the EDM = 0, then the spin should always be parallel to the momentum asymmetry should be zero

Current storage ring EDM projects

An all electric storage ring to search for the pEDM

Magic momentum $p = \frac{0.7 \text{GeV}}{c}$, $E = 8 \text{MV/m}, \rho = 50, \ell = 500 \text{m}$ $\tau_c > 1000 \text{s}$ $\sigma \approx 2 \times 10^{-29} \text{ecm}$ Polarimetry uses scattering on target

Systematic challenges:

- Radial B-field $\langle B_r \rangle < 10 \mathrm{aT}$
- Can be detected by separation of CW and CCW beams by 1 pm
- This requires BPM based on Squids resolving $1 ft \, / \sqrt{\text{Hz}}$
- Magnetic shield to reduce background field to 10nT-100nT

Hybrid storage ring high priority in SNOWMASS

- EDM physics is must do, exciting and timely, CP-violation, $\sim 10^3$ TeV New-Physics reach, axion physics, DM/DE.
- Hybrid, symmetric ring lattice and spin-based alignment. Minimized systematic error sources. Statistics and systematics of pEDM to better than 10⁻²⁹e-cm.
- Simultaneous storage of clockwise and counterclockwise proton beams
- Snowmass encouraged BNL and the srEDM collaboration to come up with a technically strong proposal for a storage ring proton EDM. BNL is currently funding the cost estimate of the storage ring EDM experiment

- Replace electrostatic quadrupoles by magnetic ones and use "quadrupole tuning" to extrapolate to true EDM
- CW and CCW within $0.1\;\mu m$ for all quadrupole strengths
- Cost estimation currently at BNL
- Circumference 500m
 E-field 45kV/cm

J-PARC muon g-2/EDM Experiment

PAUL SCHERRER INSTITUT

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

Muon EDM @ FNAL

- Muon EDM causes tilt in precession plane
- Asymmetry in vertical decay angle of positrons
- Vertical angle measured by tracking detectors
- Momentum binned analysis for maximum sensitivity
 - Run 1 analysis still blinded. Assuming zero signal expecting limit of:

|d_μ| < 2.0 × *10*^{−19}*e*.cm (95% C.L.)

- Still statistically limited in tracker analysis
- Factor of ~10 improvement for statistics accumulated so far, with tracking improvements

Joe Price - on behalf of g-2 collaboration

- Data taking concluded
- EDM analysis ongoing
- First result expected in ... years

Frozen-spin in a compact SR for beta-decay ions

Feasibility of search for nuclear electric dipole moments at ion storage rings

I.B. Khriplovich¹

Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia, and Novosibirsk University, Novosibirsk, Russia

Received 8 September 1998; revised 21 October 1998 Editor: P.V. Landshoff Ion

Advantages compared to muon:

- Much longer beta decay life time
- Sensitive to QCD-theta term
- Ideally magnetic momentum with $approx a_{\mu}$
- Input from theory and nuclear physics needed to identify ideal isotop

Ion	$J^{\pi} \rightarrow J^{\pi'}$	μ	Z	$a \cdot 10^3$	t _{1/2}	Q (barn)	Branching	
²⁴ 11Na	$4^+ \rightarrow 4^+$	1.6903(8)	5	15.1(0.5)	15 h		99.944%	
⁶⁰ 27Co	$5^+ \rightarrow 4^+$	3.799(8)	23	-8(2)	5.3 y	0.44	99.925%	
⁸² 35Br	$5^- \rightarrow 4^-$	1.6270(5)	13	27.2(0.3)	35 h	0.75	98.5%	
93 37 Rb	$5/2^- \rightarrow 5/2^+$	1.4095(16)	27	-28.1(1.1)	5.8 s	0.18	43%	
9437 Rb	$3^- \rightarrow 3^-$	1.4984(18)	23	21.5(1.2)	2.7 s	0.16	30.6%	
¹¹⁰ 47 Ag *	$6^+ \rightarrow 5^+$	3.607(4)	33	3(1)	250 d	1.4	66.8%	
¹¹⁸ 49 In *	$8^- \rightarrow 7^-$	3.321(11)	25	- 19(3)	8.5 s	0.44	1.4%	
¹²⁰ ₄₉ In *	$(8^{-}) \rightarrow 7^{-}$	3.692(4)	27	26(1)	47 s	0.53	84.1%	
¹²¹ ₅₀ Sn	$3/2^+ \rightarrow 5/2^+$	0.6978(10)	28	6(1)	27 h	-0.02(2)	100%	
¹²⁵ ₅₁ Sb	$7/2^+ \rightarrow 5/2^+$	2.630(35)	47	0 ± 13	2.8 y		40.3%	
131 53 I	$7/2^+ \rightarrow 5/2^+$	2.742(1)	51	7.0(0.4)	8.0 d	-0.40	89.9%	
133 53 I	$7/2^+ \rightarrow 5/2^+$	2.856(5)	53	25(2)	21 h	-0.27	83%	
133 54 Xe	$3/2^+ \rightarrow 5/2^+$	0.81340(7)	36	2.58(9)	5.2 d	0.14	99%	
134 55 Cs	$4^+ \rightarrow 4^+$	2.9937(9)	51	-16.0(0.3)	2.0 y	0.39	70.11%	
136 55Cs	$5^+ \rightarrow 6^+$	3.711(15)	51	-9(4)	13 d	0.22	70.3%	
¹³⁷ 55Cs	$7/2^+ \rightarrow 11/2^-$	2.8413(1)	55	11.9(0.1)	30 y	0.051	94.4%	
139 55 Cs	$7/2^+ \rightarrow 7/2^-$	2.696(4)	53	11(1)	9.3 m	-0.075	82%	
141 55 Cs	$7/2^+ \rightarrow 7/2^-$	2.438(10)	49	3(4)	25 s	-0.36	57%	
143 55 Cs	$3/2^+ \rightarrow 5/2^-$	0.870(4)	41	12(5)	1.8 s	0.47	24%	
140 57 La	$3^{-} \rightarrow 3^{+}$	0.730(15)	17	3 ± 21	1.7 d	0.094	44%	
¹⁶⁰ 65Tb	$3^- \rightarrow 2^-$	1.790(7)	47	16(4)	72 d	3.8	44.9%	
¹⁷⁰ 60 Tm	$1^- \rightarrow 0^+$	0.2476(36)	21	2.2 ± 14.5	129 d	0.74	99.854%	
¹⁷⁷ ₇₁ Lu	$7/2^+ \rightarrow 7/2^-$	2.239(11)	57	- 6(5)	6.7 d	3.4	78.6%	
¹⁸³ 73 ^{Ta}	$7/2^+ \rightarrow 7/2^-$	(+)2.36(3)	61	12(13)	5.1 d		92%	
¹⁹² 77 Ir	$4(^+) \rightarrow 3^+, 4^+$	1.924(10)	47	-17(5)	74 d	2.3	42%,54%	
196 70 Au	$2^- \rightarrow 2^+$	0.5906(5)	29	-1.1(8)	6.2 d	0.81	8%	
198 70 Au	$2^- \rightarrow 2^+$	0.5934(4)	29	13.9(7)	2.7 d	0.68	98.99%	
²⁰³ ⁸⁰ Hg	$5/2^- \rightarrow 3/2^+$	0.84895(13)	34	14.71(15)	47 d	0.34	100%	
222 87 Fr	$2^- \rightarrow 3^-$	0.63(1)	35	0 ± 20	14 m	0.51	55%	
223 87 Fr	$3/2(^{-}) \rightarrow 3/2^{-}$	1.17(2)	87	0 ± 20	22 m	1.2	67%	
224 87 Fr	$1(^{-}) \rightarrow 1^{-}$	0.40(1)	45	-3 ± 25	3.3 m	0.52	42%	
²⁴² os Am	$1^{-} \rightarrow 0^{+}.2^{+}$	0.3879(15)	47	-0.5 + 3.9	16 h	-2.4	37%.46%	page 30

• Measurement of Axions using deuterons

- Let spins precess in horizontal plane
- Axion/ALP will lead to a build-up of a vertical polarization resonance condition: $\hbar \omega_a = m_a c^2$

https://arxiv.org/abs/2208.07293

- *d_{AC}*: Oscillating part of electric dipole moment
- a few days of beam time

•
$$f_{AC} = \frac{1}{2\pi} \frac{m_a c^2}{\hbar} = \gamma G f_{rev}$$

- Storage rings exploiting the frozen-spin technique could provide a new window to CP violation manifesting in EDM of charged particles
- At PSI a compact muon EDM experiment is being setup for demonstration
- The international storage ring EDM collaboration proposed a new lattice for, e.g. BNL to search with a sensitivity of better than $\sigma(d_p) \approx 10^{-29} ecm$

