Recent results on neutrino oscillations from NOvA

Pierre Lasorak CP2023 15/02/2023

Neutrinos oscillations

- Neutrinos change flavour as they travel
 - Nobel Prize 2015 for Kajita-san (SK) and Art McDonald (SNO)
- Oscillations depend on
 - Travel distance and energy of neutrinos
 - 3 angles of "rotation": θ_{12} , θ_{13} and θ_{23}
 - 2 differences of mass squared: Δm^2_{32} and Δm^2_{12}
 - 1 phase: δ_{CP}
 - Matter density (through the MSW effect)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{atmospheric, beam}} \underbrace{ \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix}}_{\text{reactor, beam}} \underbrace{ \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{solar, reactor}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \\ s_{ij} = s_{$$

7

• 3 neutrinos leading order disappearance probability:

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \frac{1.2 / \Delta m_{32}^2 L}{E}$$
$$\Delta m_{32}^2 = m_2^2 - m_3^2$$

Neutrinos oscillations

- Unknowns left to discover/measure
 - θ_{23} octant / maximal mixing: is $\sin^2\theta_{23} = 0.5$?
 - Mass ordering: sign of Δm^{2}_{32} ?
 - Charge parity violation: is $\delta_{CP} \neq 0$?

Pierre Lasorak

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \sin^2 \frac{1.27\Delta m_{32}^2 L}{E}$$

Normal ordering

Inverted ordering

 ν_2 \mathcal{V}_1

 $\mathcal{V}_{\mathcal{R}}$

- NOvA (NuMI Off-axis electron- ν Appearance \bullet experiment)
 - Long baseline neutrino experiment
 - Taking data since 2014, ~250 physicists
 - Aims to measure ν_{μ} disappearance and ν_{e} appearance in a ν_{μ} beam
- 3 parts
 - NuMI proton accelerator, target and neutrino beam line producing a 2 GeV ν_{μ} beam (km 0) @ Fermilab
 - Near detector (300 tonnes of liquid plastic scintillator, 1 km away) @ Fermilab
 - Far detector (14 ktonnes, 810 km away) @ Ash River

NOvA experiment

NuMI beam

- NuMI proton accelerator
 - Capable of delivering ~850 kW (current record at 893 kW) of 120 GeV protons
 - Collimated to a 1m graphite target
- Produces a lot of π , which decay into ν_{μ}
 - π propagate in an intense magnetic field produced by the horns and decay in the 675 m decay pipe
- Detectors sit 14 mrad from the beam axis and see ν_{μ} of energy 2 GeV (off-axis effect)
- Horn current can be inverted:
 - FHC "forward horn current" → neutrino beam
 - RHC "reverse horn current" \rightarrow anti-neutrino beam

NuMI beam

- Near and far detectors are functionally identical (km 1 and 810)
 - Tracking calorimeters
 - Extruded plastic cells filled with liquid scintillator
 - Alternate in vertical and horizontal position
 - Wavelength shifting fibre running through each cell
 - Avalanche Photodiode readout

NOvA detectors

NOvA events

Pierre Lasorak

- Neutrino oscillation formula needs
 - ν flavour • Ε_ν
- Detailed images of the neutrino Charged Current (CC) events @ NOvA allows:
 - Event classification → Convolutional Neural Network
 - Energy reconstruction

Energy reconstruction

- Muon neutrinos CC: $E_{\nu_{\mu}} = E_{Had} + E_{\mu}$ (calorimetry and range) energy resolution: 9%
- Electron neutrinos CC: $E_{\nu_e} = f(E_{Had}, E_{EM})$ (both with calorimetric estimation) average energy resolution: 11%
- NC interactions: Calorimetry (14~17% resolution)

- Effect of δ_{CP}
 - No effect on the ν_{μ} spectra
 - Tiny effect due to matter effect
 - $\nu_{\mu} \rightarrow \nu_{e}$ oscillations are reduced compared to the anti-neutrino equivalent at maximal CP violation

Why NOvA? Far Detector True E_{ν} "mock study"

Why NOvA? Far Detector True E_{ν} samples

- Makes extensive use of the functionally identical detectors
 - fold it again to the FD
- Able to drastically reduce systematic uncertainties

Extrapolation Simplified view

Basic idea is to unfold the ND spectra to true energy, add oscillation, corrections (beam divergences etc.), and

Far detector ν_{μ} samples

- Fitted: E_{Had} fraction quantile
- Muon |pT| bins are extrapolated separately

• Typical dip for the disappearance of $(anti-)\nu_{\mu}$

- FHC observed: 211 ν_{μ} (BG: 8.2)
- RHC observed: 105 ν_{μ} (BG: 2.1)

Far detector v_e samples

- Split by PID score from a convolutional neural network
 - FHC observed: 82 (BG: 26.8)
 - RHC observed: 33 (BG: 14)

Pierre Lasorak

- $\nu_{\rm e}$ samples are statistically limited \rightarrow effect of systematics on $\delta_{\rm CP}$ and θ_{13} is negligible
- Main effects for ν_{μ} samples
 - Calibration and neutrino cross section

FD systematics

Cross section systematics

- (Should be) every LBL neutrino physicist's nightmare
 - A lot of unanswered questions that have a high impact on long baseline neutrino experiments
- NOvA uses GENIE v3.0.6 as neutrino nucleus interaction generator
 - Tuned by the GENIE collaboration and us (so-called N1810j_0211a -"NINJA" tune)
 - Z-expansion Quasi-Elastic Form Factor
 - Extra systematics
 - Low Q² suppression •
 - Multi nucleon knockout (2p2h/MEC) •
 - Final State Interactions (FSI)

u

u

Disappearance parameters

- "Disappearance parameters" = θ_{23} and Δm_{32}^2 (i.e. typical atmospheric parameters first seen by SK)
- Weak preference in upper octant normal mass ordering
- Bayes factor (ratio of steps):
 - $BF_{\frac{NO}{IO}} = 2.1$

•
$$\mathsf{BF}_{\frac{UO}{LO}} = 1.7$$

		Mass ordering		7
		Normal	Inverted	
Octant	Upper	41.7%	20.9%	6
	Lower	25.8%	11.5%	3
Total		67.5%	32.5%	1

Appearance parameters

- "Appearance parameters" = θ_{13} and δ_{CP} , although they can't be observed without disappearance parameters...
- Strong correlation between mass hierarchy and δ_{CP}
 - Normal ordering: $\delta_{CP} = 1.5 \pi$ outside the 2 σ credible intervals (CI)
 - Inverted ordering: $\delta_{CP} = 0.5 \pi$ outside the 3 σ CI

Pierre Lasorak

- Possible to remove the reactor constraint and check the posterior of
 - Electron neutrino appearance probability is:

$$\simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin \frac{\Delta m_{32}^2 L}{4E} + f(\delta_{CP})$$

- So θ_{23} (from ν_{μ} survival probability) and θ_{13} (from v_e appearance probability) should be anti-correlated
- $\nu_{\rm e}$ disappearance (reactor neutrino) and $\nu_{\rm e}$ appearance data (NOvA) have high degree of consistency

- Jarlskog invariant is a measure of CP violation, lacksquareindependent of the PMNS parameterisation
 - $J = \cos \theta_{12} \cos^2 \theta_{13} \cos \theta_{23} \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta_{CP}$
- Basic idea:
 - $J = 0 \rightarrow CP$ is conserved
 - $J \neq 0 \rightarrow CP$ is violated
- NOvA has weak sensitivity to J, so the choice of prior matters
 - Flat prior in $\sin \delta_{CP}$ (related to what we see)
 - Flat prior in $\delta_{CP} \rightarrow J \neq 0$ more preferred
- $BF_{\frac{J\neq0}{J=0}} = 1.5$ (from the Savage-Dickey method)

Jarlskog invariant

- Analysis of the NOvA data shows
 - No deviation from PMNS 3 neutrino flavour model
 - Marginal preference for the upper octant of θ_{23} and normal neutrino mass ordering
 - No hints of CP violation in the neutrino sector
- Future of NOvA
 - around 60x10²⁰ by the end of NOvA
 - Test beam
 - Joint analysis with T2K \bullet

Thanks for your attention!

Conclusion

• More POT: we analysed 26x10²⁰ POT, collected 12x10²⁰ since 2020 dataset, and should get

Pierre Lasorak

Backup

- Sign of J is governed by the sign of $\sin \delta_{CP}$
 - In inverted ordering: 2σ exclusion of J = 0
 - In normal ordering no exclusion of J = 0

Jarlskog invariant

Reactor constraint

measurement on θ_{13} to enhance their sensitivity to δ_{CP}

Pierre Lasorak

• Typically long baseline neutrino experiment use the reactor neutrino experiment's

- Effect of the octant (θ_{23} bigger or smaller than 45°)
 - Same effects in FHC/RHC
 - ν_{μ} channel:
 - Maximal disappearance at $\theta_{23} = 45^{\circ}$ any movement away from that $\rightarrow \nu_{\mu}$ disappear less
 - Disappearance $\propto \sin^2 2\theta_{23}$
 - $\nu_{\rm e}$ channel:
 - Sensitive to octant
 - Appearance $\propto \sin^2 \theta_{23}$

Why NOvA? Far Detector True E_{ν} samples

True variables

250

(in 200 HD $^{\prime \prime \prime}$ (a. n. 150 150 100

150

50

Pierre Lasorak

EHad extrapolation

- Energy reconstruction depends on the hadronic energy fraction
- Split the hadronic energy fraction in quartiles
- Extrapolate ND \rightarrow FD each of them independently

- ND and FD have different sizes
 - Transverse muon momentum is different
- Separate into 3 p_T bins and extrapolate each of them independently

p_T extrapolation

- Done with cosmic muons
 - Select stopping muons
 - Measure distance from the end of the track
 - Compare dEdx for MC and data and adjust ullet
- Note these are plots from 2017! Got better since

Detector Calibration

- Limitation
 - Hadronic energy deposition is quite different from MIP!
- Hoping that the test beam can help us

Multi-nucleon knockout

- σ_{MEC} needs a huge increase to \bullet agree with ND data
 - Not theory motivation
- "Good" answer requires a lot of work from both phenomenology and experiment data

- Preselection
 - Quality cut (detector was running normally)
 - Contained cut (nothing seems to be exiting) the detector)
 - Cosmic rejection Boosted Decision Tree (the event doesn't look like a cosmic ray)
- PID with Convolutional Neural Network (CNN)
 - Topology-based algorithm
 - High purity samples

Event classification

Event classification

Pierre Lasorak

Event classification

Pierre Lasorak

CVN confusion

