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Brief Philosophy of EFT
Part 1



Role of scale in physical problems
Some distribution  
of electric charges 

r

Near 
observer

Far 
observer

R

L

Near observer, L~R, needs to know the position of every charge to describe electric field in her proximity  

Far observer, ,  can instead use multipole expansion:r ≫ R V( ⃗r ) = Q
r

+
⃗d ⋅ ⃗r

r3 +
Qijrirj

r5 + …

Far observer is able to describe electric field in his vicinity using just a few parameters: 
the total electric charge , the dipole moment , eventually the quadrupole moment , etc…. Q ⃗d Qij

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R/r). 
 One can truncate the expansion at some order depending on the value of (R/r) and experimental precision

Far observer, like Molière's Mr. Jourdain,  
discovers that he has been using EFT all his life  

On the other hand, far observer can only guess the "fundamental" distributions of the charges, 
as many distinct distributions lead to the same first few moments   

∼ 1/r ∼ R /r2 ∼ R2/r3



Consider a theory of a light particle  
interacting with a heavy particle H

ϕ

At large momentum scales, p2 >> mH2,  
we see propagation of the heavy particle H. 

Long range force acting between light particles ϕ

P(p2) = 1
p2 − m2

H + iϵ
≈

1
p2 + iϵ

p2 ≫ m2
H

− 1
m2

H
p2 ≪ m2

H

Heavy particle H propagator in momentum space:

ℳ ∼ g2

p2 + iϵ ℳ ∼ g2

m2
H

At small momentum scales, p2 << mH2,  
propagation of the heavy particle H 

effectively leads to a contact interaction 
between light particles ϕ

H

ϕ

ϕ

ϕ

ϕ
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ϕ

ϕ

ϕ

ϕ
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ϕ

Role of scale in quantum field theory



At small distance scales, |x1-x2| << 1/mH,  
the heavy particle H propagates.  

Force acting between light particles ϕ

At large distance scales, |x1-x2| >> 1/mH,  
propagation of the heavy particle H suppressed. 
Interaction looks like a delta function potential 

P(x1, x2) ∼ exp(−mH |x1 − x2 | )

mH ∼ ΔE ≪ 1
|x1 − x2 |

∼ 1
Δt

⇒ ΔEΔt ≪ 1 mH ∼ ΔE ≫ 1
|x1 − x2 |

∼ 1
Δt

⇒ ΔEΔt ≫ 1

Heavy particle H propagator in coordinate space:

Consider a theory of a light particle  
interacting with a heavy particle H

ϕ H
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Role of scale in quantum field theory



• Processes probing  distance scales , equivalently  energy scales , 
cannot  resolve the propagation of H


• Then, intuitively, exchange of heavy particle H between light particles  should be 
indistinguishable from a contact interaction of   


• In other words, the effective theory describing  interactions should be well 
approximated by a local Lagrangian, that is, by a polynomial in  and its 
derivatives 

L ≫ mH E ≪ mH

ϕ
ϕ

ϕ
ϕ

This is the generic way how the effective theory description arise in particle physics, 
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Role of scale in quantum field theory



Figure 5: One-loop Feynman diagrams contributing to the �� ! �� scattering ampli-
tude in the toy model described by the Lagrangian Eq. (2.1) in the limit �1 = 0.
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from which the observable di↵erential cross-section can be calculated. Here �� is the
wave-function renormalization which however vanishes at one loop in the unbox basis,
and MS prescription consists in dropping the 1/✏̄ poles in the amplitude. Demanding
that SEFT

4
is renormalization-scale independent, one obtains the RG equation for the

Wilson coe�cient C4,
dC4
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It is instructive to repeat the same calculation in the box basis. O↵-shell, the 2-to-2
amplitude reads
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Much as for the two point function, the on-shell matrix elements M̃EFT

4
and M

EFT

4
are

di↵erent, and the two have a di↵erent momentum dependence. However, the S-matrix

23

Role of scale in quantum field theory

Effective theory approach works beyond tree level
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Figure 5: One-loop Feynman diagrams contributing to the �� ! �� scattering ampli-
tude in the toy model described by the Lagrangian Eq. (2.1) in the limit �1 = 0.
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wave-function renormalization which however vanishes at one loop in the unbox basis,
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Much as for the two point function, the on-shell matrix elements M̃EFT

4
and M

EFT

4
are

di↵erent, and the two have a di↵erent momentum dependence. However, the S-matrix
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This works also for higher loops, and with both heavy and light particles in the loops



Effective field  theory

How to build an EFT

Bottom up Top down

Starting with a set of particles 
we build the Lagrangian  

describing all their possible interactions 
obeying a prescribed set of symmetries 
and organised in a consistent expansion 

Starting with a given theory  
(effective or fundamental) 

we integrate out degrees of freedom 
heavier than some prescribed mass scale 
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!ese Lectures 



In"oducing SMEFT

Part 2



Elementary particles we know today

This set of particles are the propagating degrees of freedom (at least) right above the 
electroweak scale,  that is at 100 GeV - 1 TeV E ∼

graviton



Elementary particles we know today

In these lectures gravity is decoupled and ignored (good assumption in most of  
laboratory experiments). Otherwise the relevant EFT is called GRSMEFT.

graviton



SMEFT
SMEFT is an effective theory for these degrees of freedom:

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously  
 broken to SU(3)xU(1) by a VEV of the Higgs field

incorporating certain physical assumptions:

Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Ga

µ 8 1 0 Gluon 1 1
W k

µ 1 3 0 Weak SU(2) bosons 1 1
Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also

display the spin of the associated particle and the canonical dimension of the field. The matter

fields (rows 4-8) come in 3 copies (generations), labeled by the generation index J = 1 . . . 3, where

Q = (q1, q2, q3), U c = (uc
1, u

c
2, u

c
3) ⌘ (uc, cc, tc), Dc = (dc1, d

c
2, d

c
3) ⌘ (dc, sc, bc), L = (l1, l2, l3),

Ec = (ec1, e
c
2, e

c
3) ⌘ (ec, µc, ⌧ c). Here qJ and lJ are SU(2) doublets: q1 =

✓
u
d

◆
, q2 =

✓
c
s

◆
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✓
t
b

◆
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µ

◆
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⌫⌧
⌧

◆
. The generation indices will be often suppressed to reduce the

clutter.

for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possiblity in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

One last comment to close this section: note that assumptions #1-#3 do not restrict
the SMEFT Lagrangian to be renormalizable. There was a time in the history of particle
physics when renormalizability was hailed as a sacred priniciple that every succesful quntum
theory should obey. Now the pendulum has swung in the opposite direction, and we think
that every fundmental QFT description of realitiy corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approximated by a renormalizable QFT, as
is the case for physics at the electroweak scale. We think of this as an accident due to a large
separation between the electroweak scale and the scale suppressing the non-renorrmalizable
interactions. However we expect that these non-renormalizable interactions are present in
the Lagrangian, and will become apparent when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic way to construct the SMEFT Lagrangian. The fields
corresponding to the SM particles and their representations under the gauge symmetry are
summarized in Table 1. Using these fields as building blocks we will write down the most
general Lagrangian consistent with the assumptions spelled out in Section 2.
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Note on fermion conventions

I am using the 2-component spinor formalism

A Dirac fermion is described by a pair of spinor fields   with the kinetic and mass terms   f and f̄ c

ℒ = if̄σ̄μDμ f + if cσμDμ f̄ c − mf c f − mf̄f̄ c σμ = (1,σ)
σ̄μ = (1, − σ)

f̄ ≡ f*
To translate to 4-component Dirac notation use 

F = ( f
f̄ c), F̄ = (f c f̄), γμ = ( 0 σμ

σ̄μ 0 )
For example 

f̄σ̄μ∂μ f = F̄Lγμ∂μFL

f cσμ∂μ f̄ c = F̄Rγμ∂μFR

f c f = F̄RFL

f̄ f̄ c = F̄LFR

F̄ ≡ F†γ0

See the spinor bible 
[arXiv:0812.1594]   
for more details



SMEFT power counting

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
We can organize the SMEFT Lagrangian  in a dimensional expansion: 

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry  

strictly respected by all interactions

 Since Lagrangian has mass dimension , by dimensional analysis the couplings 
(Wilson coefficients) of interactions in  have  mass dimension   

[ℒ] = 4
ℒD [CD] = 4 − D

Each  is a linear combination of SU(3)xSU(2)xU(1) invariant interaction terms (operators) 
where  is the sum of canonical dimensions of all the fields entering the interaction

ℒD
D

Standard SMEFT power counting:  where  ,   

and  is identified with the mass scale of the UV completion of the SMEFT,

CD ∼ cD

ΛD−4 cD ∼ 1
Λ

In the spirit of EFT, each  should include a complete and non-redundant set of interactionsℒD



 SM Lagrangian
Higher-dimensional 

SU(3)C x SU(2)L x U(1)Y invariant  
interactions added to the SM

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At sufficiently high energies, such that we can ignore particle masses,  
amplitudes for physical processes take the form

ℳSMEFT = ℳSM + CD=5E + CD=6E2 + CD=7E3 + CD=8E4 + …

∼ ℳSM + c5E
Λ + c6E2

Λ2 + c7E3

Λ3 + c8E4

Λ4 + …

Standard SMEFT power counting sets up the rules for expanding  
the amplitudes and observables  in powers of the new physics scale .  

For  expansion can be truncated at some , depending on the desired precision 
Λ

E ≪ Λ D

SMEFT power counting



Experiment: μH ∼ 100 GeV

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT

ℒD=2 = μ2
HH†H

Unsolved mystery why , 
which is called the hierarchy problem   

μ2
H ≪ Λ2

Only a single D=2 operator  can be build from the SM fields:

Philosophy of EFT: μH ∼ Λ ≳ 1 TeV

From the point of view of EFT, the hierarchy problem is a breakdown of dimensional analysis



ℒD=3 = 0

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT

Simply, no gauge invariant operators made of SM fields 
exist at canonical dimension D=3

The absence of D=3 operators is a feature of SMEFT, but not a law of nature.  
E.g. in SMEFT, where one also has singlet neutrino, one can write down  ν

ℒνSMEFT
D=3 = 1

2 νcMννc + h . c .



Strictly speaking,  has not been observed directly. Its value is known within SM hypothesis, but not within SMEFT, without additional assumptions.  
Observation of double Higgs production (receiving contribution from cubic Higgs coupling) will be a direct proof that  is there in the Lagrangian. 

λ
λ

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT

Experiment: all these interactions at D=4 above have been observed, except for  θ̃

Note that  has no physical consequences,  while  can be eliminated by chiral rotation θBBμνB̃μν θWWk
μνW̃k

μν

Dμ f = ∂μ f + igsGa
μTaf + igLWi

μ
σi

2 f + igY BμYf

Va
μν = ∂μVa

ν − ∂νVa
μ − g f abcVb

μVc
ν

G̃a
μν ≡ 1

2 ϵμναβGαβ a

H̃a = ϵabH*b

ℒD=4 = − 1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈Q,L

if̄σ̄μDμ f + ∑
f∈U,D,E

if cσμDμ f̄ c

−(UcYuH̃†Q + DcYdH†Q + EcYeH†L + h . c . ) + DμH†DμH − λ(H†H)2

+θ̃Ga
μνG̃a

μν,

D=4 is special because it doesn't contain an explicit scale (marginal interactions) 

Q =
q1
q2
q3

=

(u
d)

(c
s)

( t
b)

L =
l1
l2
l3

=

(νe
e )

(νμ
μ )

(ντ
τ )

Uc =
uc

cc

tc

Dc =
dc

sc

bc

Ec =
ec

μc

τc



• At dimension 5, the only gauge-invariant operators one can construct are the so-
called Weinberg operators, which break the lepton number


• After electroweak symmetry breaking they give rise to Majorana mass terms for 
the SM (left-handed) neutrinos with the mass matrix 


• Neutrino oscillation experiments strongly suggest that these operators are present  
(unless neutrino masses are of the Dirac type)

M = − v2C

ℒD=5 = (LH)C(LH) + h . c . → 1
2 ∑

J,K=e,μ,τ
v2CJK(νJνK) + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)

This is a huge success of the SMEFT paradigm:  
corrections to the SM Lagrangian predicted at the next order in the EFT expansion, are 

indeed observed in experiment!

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 



SMEFT at dimension-5

ℒSMEFT ⊃ − 1
2 (νMν) + h . c .

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (though the lightest neutrino may even be massless)

It follows that the dimension-5 Wilson coefficient is of order  GeV C ∼ 1
Λ with Λ ∼ 1015

M = − v2C

One one hand, that is perfect, because it suggests that  
the basic SMEFT assumption, ,  is indeed satisfiedΛ ≫ v



SMEFT at dimension-5

However,  GeV leads to a psychological problemΛ ∼ 1015

If this is really the correct estimate, then we will never see any other effects  
of higher-dimensional operators, except possibly of the baryon-number violating ones :/ 

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

If   then naive SMEFT counting suggest  , , 
 and so on

ℒD=5 ∼ 1
Λ ℒD=6 ∼ 1

Λ2 ℒD=7 ∼ 1
Λ3

ℒSMEFT ⊃ − 1
2 (νMν) + h . c . M = − v2C



?

Career opportunities



SMEFT at dimension-5

Dimension-5 interactions are special because they violate lepton number L.  
More generally, all odd-dimension SMEFT operators violate B-L  

If we assume that the mass scale of new particles with B-L-violating interactions  is ,  
and there is also B-L-conserving new physics at the scale   , then the estimate is  

ΛL
Λ ≪ ΛL

Alternatively, it is possible (and likely) that there is more than one mass scale of new physics

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

However, this conclusion is not set in stone  
It  is possible that  the true new physics scale is not far from TeV,  

but its coupling to the lepton sector is very small 

 ,   , , ,  and so onℒD=5 ∼ 1
ΛL

ℒD=6 ∼ 1
Λ2 ℒD=7 ∼ 1

Λ3
L

ℒD=8 ∼ 1
Λ4

ℒSMEFT ⊃ − 1
2 (νMν) + h . c . M = − v2C

If   then naive SMEFT counting suggest 

 , , ...

ℒD=5 ∼ 1
Λ
ℒD=6 ∼ 1

Λ2 ℒD=7 ∼ 1
Λ3



SMEFT at dimension-6

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At dimension-6 all hell breaks loose
Grządkowski et al 

arXiv:1008.4884 

ℒD=6 = CH(H†H )3 + CH□(H†H ) □ (H†H ) + CHD |H†DμH |2

+CHWBH†σkH Wk
μνBμν + CHGH†H Ga

μνGa
μν + CHWH†H Wk

μνWk
μν + CHBH†H BμνBμν

++CWϵklmWk
μνWl

νρWm
ρμ + CG f abcGa

μνGb
νρGc

ρμ

+CH G̃ H†H G̃ a
μνGa

μν + CHW̃ H†H W̃k
μνWk

μν + CH B̃ H†H B̃ μνBμν + CHW̃BH†σkH W̃k
μνBμν

+CW̃ ϵklmW̃k
μνWl

νρWm
ρμ + CG̃ f abc G̃ a

μνGb
νρGc

ρμ

+H†H(L̄HCeHĒc) + H†H(Q̄H̃CuHŪc) + H†H(Q̄HCdHD̄c)
+iH†DμH(L̄C(1)

Hl σ̄μL) + iH†σkDμH(L̄C(3)
Hl σ̄μσkL) + iH†DμH(EcCHeσμĒc)

+iH†DμH(Q̄C(1)
Hqσ̄μQ) + iH†σkDμH(Q̄C(3)

Hqσ̄μσkQ) + iH†DμH(UcCHuσμŪc)

+iH†DμH(DcCHdσμD̄c) + {iH̃†DμH(UcCHudσμD̄c)

+(Q̄σkH̃CuWσ̄μνŪc)Wk
μν + (Q̄H̃CuBσ̄μνŪc)Bμν + (Q̄H̃CuGTaσ̄μνŪc)Ga

μν

+(Q̄σkHCdWσ̄μνD̄c)Wk
μν + (Q̄HCdBσ̄μνD̄c)Bμν + (Q̄HCdGTaσ̄μνD̄c)Ga

μν

+(L̄σkHCeWσ̄μνĒc)Wk
μν + (L̄HCeBσ̄μνĒc)Bμν + h . c . }+ ℒ4−fermion

D=6



|H |6 |H |2 Ga
μνGa

μν

|H |2 Wa
μνWa

μν| H |2 W aμν W̃ aμν
|H |2 Ga

μν G̃ a
μν | H |2 Bμ ν Bμ ν

| H |2 Bμ ν B̃ μ ν
GaμνGaνρ G̃ aρμ



OH = (H†H)3

OH□ = (H†H) □ (H†H)
OHD = |H†DμH |2

OHG = H†H Ga
μνGa

μν

OHW = H†H Wk
μνWk

μν

OHB = H†H BμνBμν

OHWB = H†σkH Wk
μνBμν

OW = ϵklmWk
μνWl

νρWm
ρμ

OG = f abcGa
μνGb

νρGc
ρμ

SMEFT at dimension-6

Bosonic CP-even operators ℒSMEFT ⊃ ∑
X

CXOX
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Bosonic CP-even operators

SMEFT at dimension-6

These affect single Higgs boson couplings  
to SM gauge bosons. For example  

 

For operators inducing couplings to photons and 

gluons bounds of order  , while 

 from Higgs physics alone 

CHGH†HGa
μνGa

μν = CHG
(v + h)2

2 Ga
μνGa

μν → vCHGhGa
μνGa

μν

|C | ≲ 1
(10 TeV)2

|CHD | ≲ 1
(TeV)2



OH = (H†H)3

OH□ = (H†H) □ (H†H)
OHD = |H†DμH |2

OHG = H†H Ga
μνGa

μν

OHW = H†H Wk
μνWk

μν

OHB = H†H BμνBμν

OHWB = H†σkH Wk
μνBμν
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Bosonic CP-even operators

SMEFT at dimension-6

Peculiar effect...  

CH□(H†H) □ (H†H) → − v2CH□(∂μh)2
Contributes to the kinetic term of the Higgs boson

Together with the SM kinetic term:

ℒSMEFT ⊃ 1
2 (∂μh)2(1 − 2v2CH□)

To restore canonical normalization,  
we need to rescale the Higgs boson field:

h → h(1 + v2CH□)
All Higgs boson couplings present in the SM  

are modified in a universal way!
h
v [2m2

WW+
μ W−

μ + m2
ZZμZμ] → h

v (1 + v2CH□)[2m2
WW+

μ W−
μ + m2

ZZμZμ]

h
v mf f̄ f → h

v (1 + v2CH□)mf f̄ f

Bounds of order  |CH□ | ≲ 1
(TeV)2
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SMEFT at dimension-6

Affects cubic Higgs boson coupling 

 

Currently weak bounds of order 

CH(H†H)3 = CH

8 (v + h)6 → 5vCH

2 h3

|CH | ≲ 1
v2

Bosonic CP-even operators



OH = (H†H)3

OH□ = (H†H) □ (H†H)
OHD = |H†DμH |2

OHG = H†H Ga
μνGa

μν

OHW = H†H Wk
μνWk

μν

OHB = H†H BμνBμν

OHWB = H†σkH Wk
μνBμν

OW = ϵklmWk
μνWl

νρWm
ρμ

OG = f abcGa
μνGb

νρGc
ρμ

SMEFT at dimension-6

Induce anomalous triple gauge couplings 
Bounds on the electroweak ones lead to  

,  

bounds on the gluon ones much weaker

|CW | ≲ 1
(3TeV)2

Bosonic CP-even operators



OH = (H†H)3

OH□ = (H†H) □ (H†H)
OHD = |H†DμH |2
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μνWk
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νρWm
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SMEFT at dimension-6

Bosonic CP-even operators

These affect electroweak precision observables  
(W boson mass, Z branching fractions),  

which are measured at per-mille level at LEP 

Bounds of order  |C | ≲ 1
(10 TeV)2



OH = (H†H)3

OH□ = (H†H) □ (H†H)
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SMEFT at dimension-6

Bosonic CP-even operators

Similar constraining power  
of Higgs and electroweak constraints  

on these particular operators 
Interesting synergy 7
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FIG. 2: S-T fit using our combined Higgs and electroweak likelihood. We assume the only non-negligible Wilson coe�cients of
dimension-6 operators at the scale mZ are c'D and c'WB . This is equivalent to the usual fit to the oblique S and T parameters
via the map in Eq. (7). We show the 1� preferred region separately for Higgs (blue) and electroweak (orange) data. The red
contours mark the 1�, 2�, and 3� preferred regions using the combined likelihood.

Obviously, this simple example is not using the full flavourful power of our approach. Nevertheless it is useful to
present here in order to connect and compare to previous works. For the Wilson coe�cients at the scale mZ we find

C'WB = 0.0027 ± 0.0028 TeV�2
, C'D = �0.0170 ± 0.0094 TeV�2

, (8)

with the correlation coe�cient ⇢ = �0.74. This translates to S = 0.035 ± 0.038, T = 0.066 ± 0.036. The best fit
ellipses are shown in Fig. 2, for the combined likelihood, and for the electroweak and Higgs likelihoods separately. It
can be seen that the LHC Higgs data contribute to constraining the S parameter, mostly via measurements of the
h ! �� rate [14].

B. Custodial vector resonance model

Another example we consider is the model with an SU(2) triplet V
I

µ
of massive vector resonances coupled to the

SM Higgs, lepton l and quark q doublets as

L �
1

2
V

I

µ

 
igHH

†
⌧

I
DµH � igHDµH

†
⌧

I
H +

X

i

gli l̄i⌧
I
�

µ
li +

X

i

gqi q̄i⌧
I
�

µ
qi

!
, (9)

where i = 1, 2, 3 is the SM generation index, and we allow the couplings to be flavour-non-universal. This kind of
resonances and interactions arises e.g. in composite Higgs or warped extra-dimensional scenarios. The parameter
space of our simplified model is characterized by 7 couplings gk and the resonance mass M . Assuming U(3)q ⇥ U(3)l

flavour symmetry would reduce the number of independent couplings to three: gH , gl and gq. Integrating out the
massive resonance leads to the SMEFT with the following Wilson coe�cients of the operators in Table I:

[C(3)
'l

]ii = �
gHgli

4M2
, [C(3)

'q
]ii = �

gHgqi

4M2
, C'⇤ = �3

g
2
H

8M2
, [Cf']ii = �

g
2
H

yfi

4M2
, [Cll]1221 = �

gl1gl2

2M2
. (10)

where yfi =
p

2mfi
v

is the Yukawa coupling of the fermion fi, f = u, d, l. As usual, only the ratios coupling/mass are
available to a low-energy observer. Thus the SMEFT parameter space describing our simplified model is 7-dimensional
in the generic case, and 3-dimensional in the U(3)q ⇥ U(3)l limit. We ignore the e↵ects of the operator Q', which
only a↵ects double Higgs production and is very weakly constrained at present. Four-fermion operators other than



These affect single Higgs boson couplings  
to SM gauge bosons, and triple gauge couplings 
But also, via loop effects other CP observables,  

such as e.g. electron EDMs

SMEFT at dimension-6

This assumption of the two-scale expansion gives us a rationale for exploring the SMEFT
Lagrangian at D = 6 and higher, and we will tacitly make it in all of the following.

So what are the dimension-6 operators in SMEFT? At D = 2 there is a single operator;
the D = 4 Lagrangian can fit a t-shirt; at D = 5 there is basically a single operator but,
taking into account the generation structure, it counts as 12 operators9 At D = 6, all hell
breaks loose: we have... wait for it... 3045 independent operators. They contribute to
phenomenology in virtually all areas of particle physics, such as Higgs physics, electroweak
precision observables, flavor physics, nuclear physics, electric dipole moments, and much
more. Let us make a quick survey of dimension-6 operators, using the set proposed in
Ref. [9] and known under the name of the Warsaw basis. To organize the presentation, they
can be divided into several classes:

LD=6 = L
bosonic
D=6 + L

Yukawa
D=6 + L

vertex
D=6 + L

dipole
D=6 + L

4�fermion
D=6 . (3.10)

The bosonic operators, as the name suggest, are constructed out of the SM gauge and
Higgs fields, without involving any fermionic fields. In the Warsaw basis there are 15
bosonic operators:

L
bosonic
D=6 =CH(H†H)3 + CH⇤(H

†H)⇤(H†H) + CHD|H
†DµH|

2 + CHWBH
†�kHW k

µ⌫Bµ⌫

+CHGH
†H Ga

µ⌫G
a

µ⌫ + CHWH†HW k

µ⌫W
k

µ⌫ + CHBH
†H Bµ⌫Bµ⌫

+CW ✏klmW k

µ⌫W
l

⌫⇢W
m

⇢µ + CGf
abcGa

µ⌫G
b

⌫⇢G
c

⇢µ

+C
H eGH

†H eGa

µ⌫G
a

µ⌫ + C
HfWH†H fW k

µ⌫W
k

µ⌫ + C
H eBH

†H eBµ⌫Bµ⌫

+C
HfWB

H†�kH fW k

µ⌫Bµ⌫ + CfW ✏klmfW k

µ⌫W
l

⌫⇢W
m

⇢µ + C eGf
abc eGa

µ⌫G
b

⌫⇢G
c

⇢µ, (3.11)

where ⇤ ⌘ @µ@µ. Already this relatively small subset of dimension-6 operators contains rich
phenomenology. Let us give a few examples. CH changes the shape of the Higgs potential,
in particular it affects the cubic Higgs boson self-coupling - perhaps the last major milestone
to be measured at the LHC. CH⇤ contributes to the Higgs boson kinetic term and thus,
indirectly, affects universally all Higgs boson production and decay rates. The following
two operators contribute to electroweak precision observables measured long ago by the
LEP collider. CHD contributes to the mass difference between the W and Z bosons, while
CHWB contributes to the kinetic mixing between the photon and the Z boson. In fact,
these two are just the famous oblique S and T parameters of Peskin and Takeuchi [10] in
another (more modern) guise. CHWB as well as the Wilson coefficients CHG, CHW , CHB

in the second line contribute to the ever important Higgs boson interaction strengths with
gluons and photons, which have been measured at the LHC. In the third line, CW and CG

induce anomalous cubic interactions of electroweak gauge bosons and gluons, respectively.
The final two lines contain CP violating interactions. They can be searched for in colliders,
but more easily discernible effects appear via their loop contributions to electric dipole
moments of the electron or the neutron.

9
C5 in Eq. (3.8) is a symmetric matrix in the generation space, thus it has six independent complex

components. A complex operator, that is to say one that is distinct from its hermitian conjugate, by
convention is counted as two operators.
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SMEFT at dimension-6

OeH = H†H(L̄HĒc)
OuH = H†H(Q̄H̃Ūc)
OdH = H†H(Q̄HD̄c)

Yukawa-like operators 

ℒSMEFT ⊃
3

∑
I,J=1

[OfH]IJ[CfH]IJ + h . c .

These affect single Higgs boson couplings  
to SM fermions. Bounds depends on the flavor 

but typically don't exceed |C | ≲ 1
(1 TeV)2



SMEFT at dimension-6

O(1)
Hl = iH†DμH(L̄σ̄μL)

O(3)
Hl = iH†σkDμH(L̄σ̄μσkL)

OHe = iH†DμH(EcσμĒc)

O(1)
Hq = iH†DμH(Q̄σ̄μQ)

O(3)
Hq = iH†σkDμH(Q̄σ̄μσkQ)

OHu = iH†DμH(UcσμŪc)

OHd = iH†DμH(DcσμD̄c)
OHud = iH̃†DμH(UcσμD̄c)

These affect electroweak precision observables  
(W boson mass, Z branching fractions),  

which are measured at per-mille level at LEP 

Bounds of order  |C | ≲ 1
(10 TeV)2

Vertex-like operators



These affect anomalous magnetic and electric 
moments of SM particles at tree level 

Bounds depend on flavor and can be very strong,  
especially for the first generation

SMEFT at dimension-6

The next class of dimension-6 operators we discuss are Yukawa-like interactions:

L
Yukawa
D=6 =H†H(L̄HCeHĒc) +H†H(Q̄H̃CuH Ū c) +H†H(Q̄HCdHD̄c) + h.c. (3.12)

Here, each CfH is a 3 ⇥ 3 complex matrix in the generation space, thus each comes with
18 free parameters, which makes 54 parameters overall. These operators contribute to
the fermion masses, but that is unobservable because it merely renormalizes the unknown
Yukawa matrices in Eq. (3.7). The observables effect is the modification of the Higgs
boson Yukawa couplings to the fermions. In the SM, the Yukawa coupling is not a free
parameter but it is uniquely fixed by the fermion’s mass. In the presence of the operator is
Eq. (3.12) that relation no longer holds, and the Higgs boson couplings to fermions become
free parameters independent of fermion masses. Moreover, a qualitatively new effect of
flavor violation in Higgs interactions may appear. That is to say, the Higgs boson can
couple to two fermions from different generations, e.g. L � h⌧̄ µ̄c, which does not occur in
the SM.

Next we have vertex-like operators:

L
vertex
D=6 =iH† !D µH(L̄C(1)

Hl
�̄µL) + iH†�k

 !
D µH(L̄C(3)

Hl
�̄µ�kL) + iH† !D µH(EcCHe�

µĒc)

+iH† !D µH(Q̄C(1)
Hq

�̄µQ) + iH†�k
 !
D µH(Q̄C(3)

Hq
�̄µ�kQ) + iH† !D µH(U cCHu�

µŪ c)

+iH† !D µH(DcCHd�
µD̄c) +

⇥
iH̃†DµH(U cCHud�

µD̄c) + h.c.], (3.13)

where H† !D µH ⌘ H†DµH�DµH†H. As before, the Wilson coefficient CHf are matrices in
the generation space, but now only CHud is a general complex matrix, while the remaining
ones are Hermitian matrices (thus with 9 free parameters each). This adds up to 81 free
parameters in Eq. (3.13). These operators contribute to the W and Z bosons interactions
with fermions, which have been precisely measured in the LEP, Tevatron, and LHC colliders.
Several qualitatively new effects are introduced by Eq. (3.13). One is the W boson couplings
to right-handed quarks, e.g. L � Wµ(tc�µb̄c), whereas in the SM W couples only to left-
handed quarks. Another is tree-level flavor-changing neutral currents, that is Z boson
couplings to quarks or leptons of different generations, e.g. L � Zµ(b̄�̄µs).

Next, we have dipole-like operators

L
dipole
D=6 =(Q̄�kH̃CuW �̄µ⌫Ū c)W k

µ⌫ + (Q̄H̃CuB�̄
µ⌫Ū c)Bµ⌫ + (Q̄H̃CuGT

a�̄µ⌫Ū c)Ga

µ⌫

+(Q̄�kHCdW �̄µ⌫D̄c)W k

µ⌫ + (Q̄HCdB�̄
µ⌫D̄c)Bµ⌫ + (Q̄HCdGT

a�̄µ⌫D̄c)Ga

µ⌫

+(L̄�kHCeW �̄µ⌫Ēc)W k

µ⌫ + (L̄HCeB�̄
µ⌫Ēc)Bµ⌫ + h.c. (3.14)

Given that CfV are 3⇥3 complex matrices in the generation space, the above introduces 144
free parameters. An important effect of the operators in Eq. (3.13) is their contribution to
the anomalous magnetic dipole moment of fundamental particles. In particular, the Wilson
coefficients [CeW ]22 and [CeB]22 contribute to the muon g� 2 which, at the time of writing,
may or may not deviate from the SM prediction. The imaginary parts of these Wilson
coefficients contribute to electric dipole moments. Finally, the operators in Eq. (3.13) in
can mediate certain processes that are forbidden in the SM, e.g. the µ! e� decay.
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SMEFT at dimension-6

These affect a wide range of physics.  
Bounds can be very strong, especially for baryon-number violating operators 

and for certain flavor- or lepton-flavor-violating operators 

ℒ4−fermion
D=6 = (L̄σ̄μL)Cll(L̄σ̄μL) + (EcσμĒc)Cee(EcσμĒc) + (L̄σ̄μL)Cle(EcσμĒc)

+(L̄σ̄μL)C(1)
lq (Q̄σ̄μQ) + (L̄σ̄μσkL)C(3)

lq (Q̄σ̄μσkQ)
+(EcσμĒc)Ceu(UcσμŪc) + (EcσμĒc)Ced(DcσμD̄c)
+(L̄σ̄μL)Clu(UcσμŪc) + (L̄σ̄μL)Cld(DcσμD̄c) + (EcσμĒc)Ceq(Qσ̄μQ)

+{(L̄Ēc)Cledq(DcQ) + ϵkl(L̄kĒc)C(1)
lequ(Q̄

lŪc) + ϵkl(L̄kσ̄μνĒc)C(3)
lequ(Q̄

lσ̄μνŪc) + h . c . }
+(Q̄σ̄μQ)C(1)

qq (Q̄σ̄μQ) + (Q̄σ̄μσkQ)C(3)
qq (Q̄σ̄μσkQ)

+(UcσμŪc)Cuu(UcσμŪc) + (DcσμD̄c)Cdd(DcσμD̄c)
+(UcσμŪc)C(1)

ud (DcσμD̄c) + (UcσμTaŪc)C(8)
ud (DcσμTaD̄c)

+(QcσμQ̄c)C(1)
qu (UcσμŪc) + (QcσμTaQ̄c)C(8)

qu (UcσμTaŪc)]
+(QcσμQ̄c)C(1)

qd (DcσμD̄c) + (QcσμTaQ̄c)C(8)
qd (DcσμTaD̄c)

+{ϵkl(Q̄kŪc)C(1)
quqd(Q̄lD̄c) + ϵkl(Q̄kTaŪc)C(1)

quqd(Q̄lTaD̄c) + h . c . }
+{(DcUc)Cduq(Q̄L̄) + (QQ)Cqqu(ŪcĒc) + (QQ)Cqqq(QL) + (DcUc)Cduu(UcEc) + h . c . }.

4-fermion operators 



SMEFT up to dimension-6
SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of 

precision physics happening today.  
In particular, it allows one to quantify the strength of different observables



SMEFT up to dimension-6
SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of 

precision physics happening today. 
Moreover, it leads to correlations between different observables, e.g. due to  
symmetry relating charged and neutral currents, and due to the interplay of tree- and 

loop-level contributions to observables

SU(2)W

Importance of global fits collecting results 
 from different types of experiments !
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[ĉ(3)
lq

]ee22
[clu]ee22
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Global fits with SMEFT up to dimension-6

Breso-Pla et al 
arXiv:2301.07036   

 collisions 
W boson mass and decays 
Drell-Yan at LHC and Tevatron 
Neutrino scattering on electrons 
Atomic parity violation 
Parity-violating electron scattering 
Nuclear beta decays 
Semi-leptonic decays of pions and kaons 
Trident muon production in  scattering 
Leptonic and hadronic tau decays  

 scattering on nuclei (coherent to not)

e+e−

ν

ν

Ingredients

Only 65 dimension-6 Wilson coefficients 
simultaneously constrained in this fit.  

Can do better :)  

Correlation matrix



SMEFT at higher dimensions

Number of baryon-number-conserving operators as function of D and number of generations Nf

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Nf=0 Nf=1 Nf=2 Nf=3 ...

Dimension-5 0 2 6 12 ...

Dimension-6 15 76 582 2499 ...

Dimension-7 0 22 212 948 ...

Dimension-8 89 895 8251 36971 ...

... ... ... ... ... ...



SMEFT at higher dimensions

Exponential growth of the number of operators with the canonical dimension D

Henning et al 
arXiv:1512.03433 2
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

information (i.e. setting all spurions equal to unity), but still retaining Nf dependence:
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(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.16), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.16)
which are SM specific are the gauge groups (and as such the Haar measures that need to be

– 17 –

Nf = 1

Nf = 3

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

For complex operators

complex conjugates counted


as separate operators



SMEFT at higher dimensions

SMEFT at dimension-6: Grzadkowski et al 
arXiv: 1008.4884 

SMEFT at dimension-5: Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 

SMEFT at dimension-7: Lehman 
arXiv: 1410.4193

SMEFT at dimension-8: Li et al 
arXiv: 2005.00008

SMEFT at dimension-9: Li et al 
arXiv: 2012.09188 

Code to generate a basis at arbitrary dimension in SMEFT: Li et al 
arXiv:2201.04639 



Beyond dimension-6

Moreover, a qualitatively new phenomenon may arise at higher dimensions  

At tree level, light-by-light scattering  
receives contribution from dimension-8,  

which in some situations may compete with  
lower order loop contributions 

ℒD=8 ⊃ (BμνBμν)2 + …

Neutron-antineutron oscillations 
arise at dimension-9

ℒD=9 ⊃ ϵabcϵdef(d̄ad̄d)(qbqe)(qcqf ) + …

In all such cases however, you need to argue validity of your EFT 
and  why you don’t expect  any larger effects of new physics  

from operators of lower dimensions

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

CP violating 3Z vertex   
in SMEFT from integrating out 2HDM 
arises via a dimension-12 operator!  

ℒD=12 ⊃ C12[H†D2(HH†H)]2 + h . c .

You need to be aware of the existence of higher-dimensional operators,  
whenever you need to argue validity of the EFT description



Beyond dimension-6

Moreover, a qualitatively new phenomenon may arise at higher dimensions  

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
You need to be aware of the existence of higher-dimensional operators,  

whenever you need to argue validity of the EFT description

If experiment pinpoints a coefficient of some operators of dimension-6, 
then subleading dimension-8 operators will provide precious information 

C6 ∼ g2
*

M2 C8 ∼ g2
*

M4
Only determines 

coupling over mass scala 
of new physics

May allow disentangle  
coupling and mass


