

Adam Falkowski SMEFT and CP violation

Lectures given at CP2023, International Workshop on the origin of matter-antimatter asymmetry

12-17 February 2023

Part 1

Brief Philosophy of EFT

Role of scale in physical problems

Near observer, L~R, needs to know the position of every charge to describe electric field in her proximity

Ear observer, $r \gg R$, can instead use multipole expansion: $V(\vec{r}) = \frac{Q}{r} + \frac{\vec{d} \cdot \vec{r}}{r^3} + \frac{Q_{ij}r_ir_j}{r^5} + \dots$ $\sim 1/r \quad \sim R/r^2 \quad \sim R^2/r^3$

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R/r). One can truncate the expansion at some order depending on the value of (R/r) and experimental precision

Far observer is able to describe electric field in his vicinity using just a few parameters: the total electric charge Q, the dipole moment \vec{d} , eventually the quadrupole moment Q_{ij} , etc....

On the other hand, far observer can only guess the "fundamental" distributions of the charges, as many distinct distributions lead to the same first few moments

Far observer, like Molière's Mr. Jourdain, discovers that he has been using EFT all his life

Consider a theory of a light particle ϕ interacting with a heavy particle H

Heavy particle H propagator in momentum space:

At large momentum scales, $p^2 >> m_{H^2}$, we see propagation of the heavy particle H. Long range force acting between light particles ϕ

At small momentum scales, $p^2 << m_{H^2}$, propagation of the heavy particle H effectively leads to a contact interaction between light particles ϕ

Consider a theory of a light particle ϕ interacting with a heavy particle H

Heavy particle H propagator in coordinate space:

At small distance scales, $|x_1-x_2| << 1/m_H$, the heavy particle H propagates. Force acting between light particles ϕ $P(x_1, x_2) \sim \exp(-m_H |x_1 - x_2|)$

At large distance scales, $|x_1-x_2| >> 1/m_H$, propagation of the heavy particle H suppressed. Interaction looks like a delta function potential

$$m_H \sim \Delta E \ll \frac{1}{|x_1 - x_2|} \sim \frac{1}{\Delta t} \quad \Rightarrow \quad \Delta E \Delta t \ll 1$$

$$m_H \sim \Delta E \gg \frac{1}{|x_1 - x_2|} \sim \frac{1}{\Delta t} \quad \Rightarrow \quad \Delta E \Delta t \gg 1$$

- Processes probing distance scales $L \gg m_H$, equivalently energy scales $E \ll m_H$, cannot resolve the propagation of H
- \bullet Then, intuitively, exchange of heavy particle H between light particles ϕ should be indistinguishable from a contact interaction of ϕ
- In other words, the <u>effective theory</u> describing ϕ interactions should be well approximated by a local Lagrangian, that is, by a polynomial in ϕ and its derivatives

This is the generic way how the effective theory description arise in particle physics,

Effective theory approach works beyond tree level

This works also for higher loops, and with both heavy and light particles in the loops

Effective field theory

Starting with a set of particles we build the Lagrangian describing all their possible interactions obeying a prescribed set of symmetries and organised in a consistent expansion

Starting with a given theory (effective or fundamental) we integrate out degrees of freedom heavier than some prescribed mass scale

UV	10 TeV	Dragons	A BA	
SMEFT	100 GeV	$\gamma, g, W, Z, \nu_i, e, \mu, \tau + u, d, s, c, b, t + h$		H
WEFT5	5 GeV	$\gamma, g, \nu_i, e, \mu, \tau$ + u, d, s, c, b		
WEFT4	2 GeV	$\gamma, g, \nu_i, e, \mu, \tau + u, d, s, c$		E
ChRT	1 GeV	γ, ν_i, e, μ + hadrons		
ChPT	100 MeV	γ, ν _i , e, μ, π, K		
QED	1 MeV	γ, ν_i, e	-	
ЕН	0.01 eV	$\gamma, \ u_i \ \gamma$		

UV	10 TeV	Dragons	ASA .	
SMEFT	100 GeV	These Lectures $\gamma, g, W, Z, \nu_i, e, \mu, \tau + u, d, s, c, b, t + h$		
WEFT5	5 GeV	$\gamma, g, \nu_i, e, \mu, \tau + u, d, s, c, b$		
WEFT4	2 GeV	$\gamma, g, \nu_i, e, \mu, \tau + u, d, s, c$		E
ChRT	1 GeV	γ, ν_i, e, μ + hadrons		
ChPT	100 MeV	γ, ν _i , e, μ, π, K		E
QED	1 MeV	γ, ν_i, e		
ЕН	0.1 eV 0.01 eV	γ, ν_i γ		E

Part 2

Introducing SMEFT

This set of particles are the propagating degrees of freedom (at least) right above the electroweak scale, that is at $E \sim 100 \text{ GeV} - 1 \text{ TeV}$

In these lectures gravity is decoupled and ignored (good assumption in most of laboratory experiments). Otherwise the relevant EFT is called GRSMEFT.

SMEFT

SMEFT is an effective theory for these degrees of freedom:

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	Name	Spin	Dimension
$\overline{G^a_\mu}$	8	1	0	Gluon	1	1
$\overline{W^k_{\mu}}$	1	3	0	Weak $SU(2)$ bosons	1	1
B_{μ}	1	1	0	Hypercharge boson	1	1
Q	3	2	1/6	Quark doublets	1/2	3/2
U^c	$\overline{3}$	1	-2/3	Up-type anti-quarks	1/2	3/2
D^c	$\bar{3}$	1	1/3	Down-type anti-quarks	1/2	3/2
L	1	2	-1/2	Lepton doublets	1/2	3/2
E^{c}	1	1	1	Charged anti-leptons	1/2	3/2
H	1	2	1/2	Higgs field	0	1

incorporating certain physical assumptions:

- 1. Locality, unitarity, Poincaré symmetry
- 2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
- 3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry strictly respected by all interactions and spontaneously broken to SU(3)xU(1) by a VEV of the Higgs field

I am using the 2-component spinor formalism

A Dirac fermion is described by a pair of spinor fields f and \bar{f}^c with the kinetic and mass terms

To translate to 4-component Dirac notation use

$$F = \begin{pmatrix} f \\ \bar{f}^c \end{pmatrix}, \qquad \bar{F} = \begin{pmatrix} f^c & \bar{f} \end{pmatrix}, \qquad \gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} \qquad \qquad \bar{F} \equiv F^{\dagger} \gamma^0$$

For example

$$\bar{f}\bar{\sigma}^{\mu}\partial_{\mu}f = \bar{F}_{L}\gamma^{\mu}\partial_{\mu}F_{L}$$
$$f^{c}\sigma^{\mu}\partial_{\mu}\bar{f}^{c} = \bar{F}_{R}\gamma^{\mu}\partial_{\mu}F_{R}$$
$$f^{c}f = \bar{F}_{R}F_{L}$$
$$\bar{f}\bar{f}^{c} = \bar{F}_{L}F_{R}$$

See the spinor bible [arXiv:0812.1594] for more details

SMEFT power counting

- 1. Locality, unitarity, Poincaré symmetry
- 2. Mass gap: absence of non-SM degrees of freedom at or below the electroweak scale
- 3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry strictly respected by all interactions

We can organize the SMEFT Lagrangian in a dimensional expansion:

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{D=2} + \mathcal{L}_{D=3} + \mathcal{L}_{D=4} + \mathcal{L}_{D=5} + \mathcal{L}_{D=6} + \mathcal{L}_{D=7} + \mathcal{L}_{D=8} + \dots$

Each \mathscr{L}_D is a linear combination of SU(3)xSU(2)xU(1) invariant interaction terms (operators) where D is the sum of canonical dimensions of all the fields entering the interaction

Since Lagrangian has mass dimension $[\mathscr{L}] = 4$, by dimensional analysis the couplings (Wilson coefficients) of interactions in \mathscr{L}_D have mass dimension $[C_D] = 4 - D$

Standard SMEFT power counting: $C_D \sim \frac{c_D}{\Lambda^{D-4}}$ where $c_D \sim 1$, and Λ is identified with the mass scale of the UV completion of the SMEFT,

In the spirit of EFT, each \mathscr{L}_D should include a <u>complete</u> and <u>non-redundant</u> set of interactions

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=3} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$$
SM Lagrangian
Higher-dimensional

 $SU(3)_c \propto SU(2)_L \propto U(1)_Y$ invariant interactions added to the SM

At sufficiently high energies, such that we can ignore particle masses, amplitudes for physical processes take the form

$$\mathcal{M}_{\text{SMEFT}} = \mathcal{M}_{\text{SM}} + C_{D=5}E + C_{D=6}E^2 + C_{D=7}E^3 + C_{D=8}E^4 + \dots$$
$$\sim \mathcal{M}_{\text{SM}} + \frac{c_5E}{\Lambda} + \frac{c_6E^2}{\Lambda^2} + \frac{c_7E^3}{\Lambda^3} + \frac{c_8E^4}{\Lambda^4} + \dots$$

Standard SMEFT power counting sets up the rules for expanding the amplitudes and observables in powers of the new physics scale Λ . For $E \ll \Lambda$ expansion can be truncated at some D, depending on the desired precision SMEFT

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=3} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$$

Only a single D=2 operator can be build from the SM fields:

$$\mathscr{L}_{D=2} = \mu_H^2 H^{\dagger} H$$

Philosophy of EFT: $\mu_H \sim \Lambda \gtrsim 1 \text{ TeV}$

Experiment: $\mu_H \sim 100 \text{ GeV}$

Unsolved mystery why $\mu_H^2 \ll \Lambda^2$, which is called the hierarchy problem

From the point of view of EFT, the hierarchy problem is a breakdown of dimensional analysis

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + (\mathscr{L}_{D=3}) + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$

 $\mathscr{L}_{D=3}=0$

Simply, no gauge invariant operators made of SM fields exist at canonical dimension D=3

The absence of D=3 operators is a feature of SMEFT, but not a law of nature. E.g. in ν SMEFT, where one also has singlet neutrino, one can write down

$$\mathscr{L}_{D=3}^{\nu \text{SMEFT}} = \frac{1}{2}\nu^{c}M_{\nu}\nu^{c} + \text{h.c.}$$

SMEFT

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=3} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$$

D=4 is special because it doesn't contain an explicit scale (marginal interactions)

Experiment: all these interactions at D=4 above have been observed, except for θ

Strictly speaking, λ has not been observed directly. Its value is known within SM hypothesis, but not within SMEFT, without additional assumptions. Observation of double Higgs production (receiving contribution from cubic Higgs coupling) will be a direct proof that λ is there in the Lagrangian. Note that $\theta_B B_{\mu\nu} \tilde{B}_{\mu\nu}$ has no physical consequences, while $\theta_W W^k_{\mu\nu} \tilde{W}^k_{\mu\nu}$ can be eliminated by chiral rotation

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$$

 $H \to \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$

Weinberg (1979) Phys. Rev. Lett. 43, 1566

$$\mathscr{L}_{D=5} = (LH)C(LH) + \text{h.c.} \rightarrow \frac{1}{2} \sum_{J,K=e,\mu,\tau} v^2 C_{JK}^{H=\frac{1}{\sqrt{2}}} (\nu_J \nu_K) + \text{h.c.}$$

- At dimension 5, the only gauge-invariant operators one can construct are the socalled Weinberg operators, which break the lepton number
- After electroweak symmetry breaking they give rise to Majorana mass terms for the SM (left-handed) neutrinos with the mass matrix $M = -v^2C$
- Neutrino oscillation experiments strongly suggest that these operators are present (unless neutrino masses are of the Dirac type)

This is a huge success of the SMEFT paradigm: corrections to the SM Lagrangian predicted at the next order in the EFT expansion, are indeed observed in experiment!

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{1}{2}(\nu M \nu) + \text{h.c.} \qquad M = -v^2 C$$

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark (though the lightest neutrino may even be massless)

It follows that the dimension-5 Wilson coefficient is of order $C \sim \frac{1}{\Lambda}$ with $\Lambda \sim 10^{15}$ GeV One one hand, that is perfect, because it suggests that

the basic SMEFT assumption, $\Lambda \gg v_{\rm r}$ is indeed satisfied

If this is really the correct estimate, then we will never see any other effects of higher-dimensional operators, except possibly of the baryon-number violating ones :/

Career opportunities

$$\mathscr{L}_{\text{SMEFT}} \supset -\frac{1}{2}(\nu M \nu) + \text{h.c.} \quad M = -v^2 C$$

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$$

If $\mathscr{L}_{D=5} \sim \frac{1}{\Lambda}$ then naive SMEFT counting suggest $\mathscr{L}_{D=6} \sim \frac{1}{\Lambda^2}$, $\mathscr{L}_{D=7} \sim \frac{1}{\Lambda^3}$, ...

However, this conclusion is not set in stone It is possible that the true new physics scale is not far from TeV, but its coupling to the lepton sector is very small

Alternatively, it is possible (and likely) that there is more than one mass scale of new physics

Dimension-5 interactions are special because they violate <u>lepton number</u> L. More generally, all odd-dimension SMEFT operators violate B-L If we assume that the mass scale of new particles with B-L-violating interactions is Λ_L ,

and there is also B-L-conserving new physics at the scale $\Lambda \ll \Lambda_L$, then the estimate is

$$\mathscr{L}_{D=5} \sim \frac{1}{\Lambda_L}$$
, $\mathscr{L}_{D=6} \sim \frac{1}{\Lambda^2}$, $\mathscr{L}_{D=7} \sim \frac{1}{\Lambda_L^3}$, $\mathscr{L}_{D=8} \sim \frac{1}{\Lambda^4}$, and so on

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$$

Grządkowski et al arXiv:1008.4884

At dimension-6 all hell breaks loose $\mathscr{L}_{D=6} = C_H (H^{\dagger} H)^3 + C_{H \Box} (H^{\dagger} H) \Box (H^{\dagger} H) + C_{H D} |H^{\dagger} D_{\mu} H|^2$ $+C_{HWB}H^{\dagger}\sigma^{k}HW_{\mu\nu}^{k}B_{\mu\nu}+C_{HG}H^{\dagger}HG_{\mu\nu}^{a}G_{\mu\nu}^{a}+C_{HW}H^{\dagger}HW_{\mu\nu}^{k}W_{\mu\nu}^{k}+C_{HB}H^{\dagger}HB_{\mu\nu}B_{\mu\nu}$ $++C_W\epsilon^{klm}W^k_{\mu\nu}W^l_{\nu\rho}W^m_{\rho\mu}+C_Gf^{abc}G^a_{\mu\nu}G^b_{\nu\rho}G^c_{\rho\mu}$ $+C_{H\widetilde{C}}H^{\dagger}H\widetilde{G}_{\mu\nu}^{a}G_{\mu\nu}^{a}+C_{H\widetilde{W}}H^{\dagger}H\widetilde{W}_{\mu\nu}^{k}W_{\mu\nu}^{k}+C_{H\widetilde{R}}H^{\dagger}H\widetilde{B}_{\mu\nu}B_{\mu\nu}+C_{H\widetilde{W}B}H^{\dagger}\sigma^{k}H\widetilde{W}_{\mu\nu}^{k}B_{\mu\nu}$ $+C_{\widetilde{W}}\epsilon^{klm}\widetilde{W}^{k}_{\mu\nu}W^{l}_{\nu\rho}W^{m}_{\rho\mu}+C_{\widetilde{G}}f^{abc}\widetilde{G}^{a}_{\mu\nu}G^{b}_{\nu\rho}G^{c}_{\rho\mu}$ $+H^{\dagger}H(\bar{L}HC_{eH}\bar{E}^{c})+H^{\dagger}H(\bar{Q}\tilde{H}C_{uH}\bar{U}^{c})+H^{\dagger}H(\bar{Q}HC_{dH}\bar{D}^{c})$ $+iH^{\dagger}\overleftrightarrow{D}_{\mu}H(\bar{L}C^{(1)}_{\mu}\bar{\sigma}^{\mu}L)+iH^{\dagger}\sigma^{k}\overleftrightarrow{D}_{\mu}H(\bar{L}C^{(3)}_{\mu}\bar{\sigma}^{\mu}\sigma^{k}L)+iH^{\dagger}\overleftrightarrow{D}_{\mu}H(E^{c}C_{He}\sigma^{\mu}\bar{E}^{c})$ $+iH^{\dagger}\overleftrightarrow{D}_{\mu}H(\bar{Q}C^{(1)}_{Ha}\bar{\sigma}^{\mu}Q)+iH^{\dagger}\sigma^{k}\overleftrightarrow{D}_{\mu}H(\bar{Q}C^{(3)}_{Ha}\bar{\sigma}^{\mu}\sigma^{k}Q)+iH^{\dagger}\overleftrightarrow{D}_{\mu}H(U^{c}C_{Hu}\sigma^{\mu}\bar{U}^{c})$ $+iH^{\dagger}\overleftrightarrow{D}_{\mu}H(D^{c}C_{Hd}\sigma^{\mu}\bar{D}^{c})+\left\{i\widetilde{H}^{\dagger}D_{\mu}H(U^{c}C_{Hud}\sigma^{\mu}\bar{D}^{c})\right.$ $+(\bar{Q}\sigma^k\tilde{H}C_{uW}\bar{\sigma}^{\mu\nu}\bar{U}^c)W^k_{\mu\nu}+(\bar{Q}\tilde{H}C_{uB}\bar{\sigma}^{\mu\nu}\bar{U}^c)B_{\mu\nu}+(\bar{Q}\tilde{H}C_{uG}T^a\bar{\sigma}^{\mu\nu}\bar{U}^c)G^a_{\mu\nu}$ $+(\bar{Q}\sigma^{k}HC_{dW}\bar{\sigma}^{\mu\nu}\bar{D}^{c})W^{k}_{\mu\nu}+(\bar{Q}HC_{dB}\bar{\sigma}^{\mu\nu}\bar{D}^{c})B_{\mu\nu}+(\bar{Q}HC_{dG}T^{a}\bar{\sigma}^{\mu\nu}\bar{D}^{c})G^{a}_{\mu\nu}$ $+(\bar{L}\sigma^{k}HC_{eW}\bar{\sigma}^{\mu\nu}\bar{E}^{c})W_{\mu\nu}^{k}+(\bar{L}HC_{eB}\bar{\sigma}^{\mu\nu}\bar{E}^{c})B_{\mu\nu}+\text{h.c.}\left.\right\}+\mathcal{L}_{D=6}^{4-\text{fermion}}$

Bosonic CP-even operators

$$\mathcal{L}_{\text{SMEFT}} \supset \sum_{X} C_{X} O_{X}$$

 $O_H = (H^{\dagger}H)^3$ $O_{H\square} = (H^{\dagger}H) \bigsqcup (H^{\dagger}H)$ $O_{HD} = |H^{\dagger} D_{\mu} H|^2$ $O_{HG} = H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$ $O_{HW} = H^{\dagger} H W_{\mu\nu}^{k} W_{\mu\nu}^{k}$ $O_{HB} = H^{\dagger} H B_{\mu\nu} B_{\mu\nu}$ $O_{HWB} = H^{\dagger} \sigma^k H W^k_{\mu\nu} B_{\mu\nu}$ $O_W = \epsilon^{klm} W^k_{\mu\nu} W^l_{\nu\rho} W^m_{\rho\mu}$ $O_G = f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$

 $O_{H} = (H^{\dagger}H)^{3}$ $O_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H)$ $O_{HD} = |H^{\dagger}D_{\mu}H|^2$ $O_{HG} = H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$ $O_{HW} = H^{\dagger}H W^k_{\mu\nu} W^k_{\mu\nu}$ $O_{HB} = H^{\dagger} H B_{\mu\nu} B_{\mu\nu}$ $O_{HWB} = H^{\dagger} \sigma^k H W^k_{\mu\nu} B_{\mu\nu}$ $O_W = \epsilon^{klm} W^k_{\mu\nu} W^l_{\nu\rho} W^m_{\rho\mu}$ $O_G = f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$

These affect single Higgs boson couplings to SM gauge bosons. For example $C_{HG}H^{\dagger}HG^{a}_{\mu\nu}G^{a}_{\mu\nu} = C_{HG}\frac{(v+h)^{2}}{2}G^{a}_{\mu\nu}G^{a}_{\mu\nu} \rightarrow vC_{HG}hG^{a}_{\mu\nu}G^{a}_{\mu\nu}$ For operators inducing couplings to photons and gluons bounds of order $|C| \lesssim \frac{1}{(10 \text{ TeV})^{2}}$, while $|C_{HD}| \lesssim \frac{1}{(\text{TeV})^{2}} \text{ from Higgs physics alone}$

 $O_H = (H^{\dagger}H)^3$ $O_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H)$ $O_{HD} = |H^{\dagger} D_{\mu} H|^2$ $O_{HG} = H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$ $O_{HW} = H^{\dagger}H W^{k}_{\mu\nu}W^{k}_{\mu\nu}$ $O_{HB} = H^{\dagger}HB_{\mu\nu}B_{\mu\nu}$ $O_{HWB} = H^{\dagger} \sigma^k H W^k_{\mu\nu} B_{\mu\nu}$ $O_W = \epsilon^{klm} W^k_{\mu\nu} W^l_{\nu\rho} W^m_{\rho\mu}$ $O_G = f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$

Contributes to the kinetic term of the Higgs boson

Peculiar effect...

$$C_{H\square}(H^{\dagger}H) \square (H^{\dagger}H) \rightarrow - v^2 C_{H\square}(\partial_{\mu}h)^2$$

Together with the SM kinetic term:

$$\mathscr{L}_{\text{SMEFT}} \supset \frac{1}{2} (\partial_{\mu} h)^2 \left(1 - 2v^2 C_{H\Box} \right)$$

To restore canonical normalization, we need to rescale the Higgs boson field:

$$h \to h \left(1 + v^2 C_{H\Box} \right)$$

All Higgs boson couplings present in the SM are modified in a universal way!

$$\frac{h}{v} \left[2m_W^2 W_\mu^+ W_\mu^- + m_Z^2 Z_\mu Z_\mu \right] \rightarrow \frac{h}{v} \left(1 + v^2 C_{H\square} \right) \left[2m_W^2 W_\mu^+ W_\mu^- + m_Z^2 Z_\mu Z_\mu \right]$$
$$\frac{h}{v} m_f \bar{f} f \rightarrow \frac{h}{v} \left(1 + v^2 C_{H\square} \right) m_f \bar{f} f$$
Bounds of order $|C_{H\square}| \lesssim \frac{1}{(\text{TeV})^2}$

 $O_H = (H^{\dagger}H)^3$ $O_{H\square} = (H^{\dagger}H) \bigsqcup (H^{\dagger}H)$ $O_{HD} = |H^{\dagger}D_{\mu}H|^2$ $O_{HG} = H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$ $O_{HW} = H^{\dagger}H W^{k}_{\mu\nu}W^{k}_{\mu\nu}$ $O_{HB} = H^{\dagger}HB_{\mu\nu}B_{\mu\nu}$ $O_{HWB} = H^{\dagger} \sigma^k H W^k_{\mu\nu} B_{\mu\nu}$ $O_W = \epsilon^{klm} W^k_{\mu\nu} W^l_{\nu\rho} W^m_{\rho\mu}$ $O_G = f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$

Affects cubic Higgs boson coupling $C_H (H^{\dagger}H)^3 = \frac{C_H}{8} (v+h)^6 \rightarrow \frac{5vC_H}{2} h^3$ Currently weak bounds of order $|C_H| \lesssim \frac{1}{v^2}$

$$O_{H} = (H^{\dagger}H)^{3}$$

$$O_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H)$$

$$O_{HD} = |H^{\dagger}D_{\mu}H|^{2}$$

$$O_{HG} = H^{\dagger}H G^{a}_{\mu\nu}G^{a}_{\mu\nu}$$

$$O_{HW} = H^{\dagger}H W^{k}_{\mu\nu}W^{k}_{\mu\nu}$$

$$O_{HB} = H^{\dagger}H B_{\mu\nu}B_{\mu\nu}$$

$$O_{HWB} = H^{\dagger}\sigma^{k}H W^{k}_{\mu\nu}B_{\mu\nu}$$

$$O_{W} = \epsilon^{klm}W^{k}_{\mu\nu}W^{l}_{\nu\rho}W^{m}_{\rho\mu}$$

$$O_{G} = f^{abc}G^{a}_{\mu\nu}G^{b}_{\nu\rho}G^{c}_{\rho\mu}$$

Induce anomalous triple gauge couplings Bounds on the electroweak ones lead to

$$|C_W| \lesssim \frac{1}{(3\text{TeV})^2}$$
,

bounds on the gluon ones much weaker

 $O_H = (H^{\dagger}H)^3$ $O_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H)$ $O_{HD} = |H^{\dagger}D_{\mu}H|^2$ $O_{HG} = H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$ $O_{HW} = H^{\dagger}H W^k_{\mu\nu}W^k_{\mu\nu}$ $O_{HB} = H^{\dagger}HB_{\mu\nu}B_{\mu\nu}$ $O_{HWB} = H^{\dagger} \sigma^k H W^k_{\mu\nu} B_{\mu\nu}$ $O_W = \epsilon^{klm} W^k_{\mu\nu} W^l_{\nu\rho} W^m_{\rho\mu}$ $O_G = f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$

These affect electroweak precision observables (W boson mass, Z branching fractions), which are measured at per-mille level at LEP Bounds of order $|C| \lesssim \frac{1}{(10 \text{ TeV})^2}$

 $O_H = (H^{\dagger}H)^3$ $O_{H\square} = (H^{\dagger}H) \bigsqcup (H^{\dagger}H)$ $O_{HD} = |H^{\dagger}D_{\mu}H|^2$ $O_{HG} = H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$ $O_{HW} = H^{\dagger} H W_{\mu\nu}^{k} W_{\mu\nu}^{k}$ $O_{HB} = H^{\dagger} H B_{\mu\nu} B_{\mu\nu}$ $O_{HWB} = H^{\dagger} \sigma^k H W^k_{\mu\nu} B_{\mu\nu}$ $O_W = \epsilon^{klm} W^k_{\mu\nu} W^l_{\nu\rho} W^m_{\rho\mu}$ $O_G = f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$

Similar constraining power of Higgs and electroweak constraints on these particular operators Interesting synergy

 $+C_{H\widetilde{G}}H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a}_{\mu\nu}+C_{H\widetilde{W}}H^{\dagger}H\widetilde{W}^{k}_{\mu\nu}W^{k}_{\mu\nu}+C_{H\widetilde{B}}H^{\dagger}H\widetilde{B}_{\mu\nu}B_{\mu\nu}$ $+C_{H\widetilde{W}B}H^{\dagger}\sigma^{k}H\widetilde{W}_{\mu\nu}^{k}B_{\mu\nu}+C_{\widetilde{W}}\epsilon^{klm}\widetilde{W}_{\mu\nu}^{k}W_{\nu\rho}^{l}W_{\rho\mu}^{m}+C_{\widetilde{G}}f^{abc}\widetilde{G}_{\mu\nu}^{a}G_{\nu\rho}^{b}G_{\rho\mu}^{c},$

These affect single Higgs boson couplings to SM gauge bosons, and triple gauge couplings But also, via loop effects other CP observables, such as e.g. electron EDMs

$$\mathscr{L}_{\text{SMEFT}} \supset \sum_{I,J=1}^{3} [O_{fH}]_{IJ} [C_{fH}]_{IJ} + \text{h.c.}$$

Yukawa-like operators

$$O_{eH} = H^{\dagger}H(\bar{L}H\bar{E}^{c})$$
$$O_{uH} = H^{\dagger}H(\bar{Q}\tilde{H}\bar{U}^{c})$$
$$O_{dH} = H^{\dagger}H(\bar{Q}H\bar{D}^{c})$$

These affect single Higgs boson couplings to SM fermions. Bounds depends on the flavor but typically don't exceed $|C| \lesssim \frac{1}{(1 \text{ TeV})^2}$

Vertex-like operators

$$O_{Hl}^{(1)} = iH^{\dagger} \overleftrightarrow{D}_{\mu} H(\bar{L}\bar{\sigma}^{\mu}L)$$

$$O_{Hl}^{(3)} = iH^{\dagger}\sigma^{k}\overleftrightarrow{D}_{\mu} H(\bar{L}\bar{\sigma}^{\mu}\sigma^{k}L)$$

$$O_{He} = iH^{\dagger}\overleftrightarrow{D}_{\mu} H(E^{c}\sigma^{\mu}\bar{E}^{c})$$

$$O_{Hq}^{(1)} = iH^{\dagger}\overleftrightarrow{D}_{\mu} H(\bar{Q}\bar{\sigma}^{\mu}Q)$$

$$O_{Hq}^{(3)} = iH^{\dagger}\sigma^{k}\overleftrightarrow{D}_{\mu} H(\bar{Q}\bar{\sigma}^{\mu}\sigma^{k}Q)$$

$$O_{Hu} = iH^{\dagger}\overleftrightarrow{D}_{\mu} H(U^{c}\sigma^{\mu}\bar{U}^{c})$$

$$O_{Hd} = iH^{\dagger}\overleftrightarrow{D}_{\mu} H(D^{c}\sigma^{\mu}\bar{D}^{c})$$

$$O_{Hud} = i\tilde{H}^{\dagger}D_{\mu} H(U^{c}\sigma^{\mu}\bar{D}^{c})$$

These affect electroweak precision observables (W boson mass, Z branching fractions), which are measured at per-mille level at LEP

Bounds of order $|C| \lesssim \frac{1}{(10 \text{ TeV})^2}$

$\mathcal{L}_{D=6}^{\text{dipole}} = (\bar{Q}\sigma^{k}\tilde{H}C_{uW}\bar{\sigma}^{\mu\nu}\bar{U}^{c})W_{\mu\nu}^{k} + (\bar{Q}\tilde{H}C_{uB}\bar{\sigma}^{\mu\nu}\bar{U}^{c})B_{\mu\nu} + (\bar{Q}\tilde{H}C_{uG}T^{a}\bar{\sigma}^{\mu\nu}\bar{U}^{c})G_{\mu\nu}^{a} + (\bar{Q}\sigma^{k}HC_{dW}\bar{\sigma}^{\mu\nu}\bar{D}^{c})W_{\mu\nu}^{k} + (\bar{Q}HC_{dB}\bar{\sigma}^{\mu\nu}\bar{D}^{c})B_{\mu\nu} + (\bar{Q}HC_{dG}T^{a}\bar{\sigma}^{\mu\nu}\bar{D}^{c})G_{\mu\nu}^{a} + (\bar{L}\sigma^{k}HC_{eW}\bar{\sigma}^{\mu\nu}\bar{E}^{c})W_{\mu\nu}^{k} + (\bar{L}HC_{eB}\bar{\sigma}^{\mu\nu}\bar{E}^{c})B_{\mu\nu} + \text{h.c.}$ (

These affect anomalous magnetic and electric moments of SM particles at tree level Bounds depend on flavor and can be very strong, especially for the first generation

4-fermion operators

$$\begin{split} \mathscr{D}_{D=6}^{4-\text{fermion}} &= (\bar{L}\bar{\sigma}^{\mu}L)C_{ll}(\bar{L}\bar{\sigma}_{\mu}L) + (E^{c}\sigma_{\mu}\bar{E}^{c})C_{ee}(E^{c}\sigma_{\mu}\bar{E}^{c}) + (\bar{L}\bar{\sigma}^{\mu}L)C_{le}(E^{c}\sigma_{\mu}\bar{E}^{c}) \\ &+ (\bar{L}\bar{\sigma}^{\mu}L)C_{lq}^{(1)}(\bar{Q}\bar{\sigma}_{\mu}Q) + (\bar{L}\bar{\sigma}^{\mu}\sigma^{k}L)C_{lq}^{(3)}(\bar{Q}\bar{\sigma}_{\mu}\sigma^{k}Q) \\ &+ (E^{c}\sigma_{\mu}\bar{E}^{c})C_{eu}(U^{c}\sigma_{\mu}\bar{U}^{c}) + (E^{c}\sigma_{\mu}\bar{E}^{c})C_{ed}(D^{c}\sigma_{\mu}\bar{D}^{c}) \\ &+ (\bar{L}\bar{\sigma}^{\mu}L)C_{lu}(U^{c}\sigma_{\mu}\bar{U}^{c}) + (\bar{L}\bar{\sigma}^{\mu}L)C_{ld}(D^{c}\sigma_{\mu}\bar{D}^{c}) + (E^{c}\sigma_{\mu}\bar{E}^{c})C_{eq}(Q\bar{\sigma}_{\mu}Q) \\ &+ \left\{ (\bar{L}\bar{E}^{c})C_{ledq}(D^{c}Q) + e^{kl}(\bar{L}^{k}\bar{E}^{c})C_{lequ}^{(1)}(\bar{Q}\bar{U}^{c}) + e^{kl}(\bar{L}^{k}\bar{\sigma}^{\mu\nu}\bar{E}^{c})C_{lequ}^{(3)}(\bar{Q}^{\bar{\sigma}}\mu^{\mu}\bar{U}^{c}) + h.c. \right\} \\ &+ (\bar{Q}\bar{\sigma}^{\mu}Q)C_{qq}^{(1)}(\bar{Q}\bar{\sigma}_{\mu}Q) + (\bar{Q}\bar{\sigma}^{\mu}\sigma^{k}Q)C_{qq}^{(3)}(\bar{Q}\bar{\sigma}_{\mu}\sigma^{k}Q) \\ &+ (U^{c}\sigma_{\mu}\bar{U}^{c})C_{uu}(U^{c}\sigma_{\mu}\bar{D}^{c}) + (D^{c}\sigma_{\mu}\bar{D}^{c})C_{dd}(D^{c}\sigma_{\mu}\bar{D}^{c}) \\ &+ (U^{c}\sigma_{\mu}\bar{U}^{c})C_{uu}^{(1)}(\bar{D}^{\sigma}\sigma_{\mu}\bar{D}^{c}) + (U^{c}\sigma_{\mu}T^{a}\bar{U}^{c})C_{uu}^{(8)}(U^{c}\sigma_{\mu}\bar{T}^{a}\bar{D}^{c}) \\ &+ (Q^{c}\sigma_{\mu}\bar{Q}^{c})C_{qu}^{(1)}(U^{c}\sigma_{\mu}\bar{D}^{c}) + (Q^{c}\sigma_{\mu}T^{a}\bar{Q}^{c})C_{qu}^{(8)}(U^{c}\sigma_{\mu}\bar{T}^{a}\bar{D}^{c}) \\ &+ \left\{ e^{kl}(\bar{Q}^{k}\bar{U}^{c})C_{qud}^{(1)}(\bar{Q}^{c}\bar{D}) + e^{kl}(\bar{Q}^{k}T^{a}\bar{U}^{c})C_{qud}^{(8)}(\bar{Q}^{l}\bar{T}^{a}\bar{D}^{c}) + h.c. \right\} \\ &+ \left\{ (D^{c}U^{c})C_{duq}(\bar{Q}\bar{L}) + (QQ)C_{qqu}(\bar{U}^{c}\bar{E}^{c}) + (QQ)C_{qqq}(QL) + (D^{c}U^{c})C_{duu}(U^{c}E^{c}) + h.c. \right\} . \\ &+ \left\{ (D^{c}U^{c})C_{duq}(\bar{Q}\bar{L}) + (QQ)C_{qqu}(\bar{U}^{c}\bar{E}^{c}) + (QQ)C_{qqq}(QL) + (D^{c}U^{c})C_{duu}(U^{c}E^{c}) + h.c. \right\} . \\ &+ \left\{ (D^{c}U^{c})C_{duq}(\bar{Q}\bar{L}) + (QQ)C_{qqu}(\bar{U}^{c}\bar{E}^{c}) + (QQ)C_{qqq}(QL) + (D^{c}U^{c})C_{duu}(U^{c}E^{c}) + h.c. \right\} . \\ \\ &+ \left\{ (D^{c}U^{c})C_{duq}(\bar{Q}\bar{L}) + (QQ)C_{qqu}(\bar{U}^{c}\bar{E}^{c}) + (QQ)C_{qqq}(QL) + (D^{c}U^{c})C_{duu}(U^{c}E^{c}) + h.c. \right\} . \\ \\ &+ \left\{ (D^{c}U^{c})C_{duq}(\bar{Q}\bar{L}) + (D^{c}Q)C_{qqu}(\bar{U}^{c}\bar{E}^{c}) + (QQ)C_{qqq}(QL) + (D^{c}U^{c})C_{duu}(U^{c}E^{c}) + h.c. \right\} . \\ \\ \\ &+ \left\{ (D^{c}U^{c})C_{duq}(\bar{Q}\bar{L}) + (D^{c}Q^{c}\bar{L}^{c}) + (D^{c}Q^{c}\bar{L}^{c}) +$$

Bounds can be very strong, especially for baryon-number violating operators and for certain flavor- or lepton-flavor-violating operators

SMEFT up to dimension-6

SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of precision physics happening today.

In particular, it allows one to quantify the strength of different observables

SMEFT up to dimension-6

SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of precision physics happening today.

Moreover, it leads to correlations between different observables, e.g. due to $SU(2)_W$ symmetry relating charged and neutral currents, and due to the interplay of tree- and loop-level contributions to observables

Importance of global fits collecting results from different types of experiments !

Global fits with SMEFT up to dimension-6

$\left(\left[\delta g_{L}^{Wl} \right]_{ee} \right)$	۱	(-1.8(2.6))		
$[\delta g_L^{\widetilde{W}l}]_{\mu\mu}$		-0.6(2.2)		$\langle [] \rangle \langle 1.02(20) \rangle$
$[\delta g_L^{Wl}]_{\tau\tau}$		0.2(3.5)		$\begin{pmatrix} [C_{ll}]_{eeee} \\ [] \\ [$
$[\delta g_L^{Ze}]_{ee}$		-0.21(28)		$[c_{le}]_{eeee} = -0.22(22)$
$[\delta g_R^{Ze}]_{ee}$		-0.42(27)		$[C_{ee}]_{eeee} = 0.19(38)$
$[\delta g_L^{Ze}]_{\mu\mu}$		0.2(1.2)		$\begin{bmatrix} C_{ll} \end{bmatrix}_{e\mu\mu e} = \begin{bmatrix} -0.56(80) \\ 0.1(0.0) \end{bmatrix}$
$[\delta g_R^{Ze}]_{\mu\mu}$		0.0(1.4)		$\begin{bmatrix} C_{ll} \end{bmatrix}_{ee\mu\mu} = 0.1(2.0)$
$[\delta g_L^{Ze}]_{\tau\tau}$		-0.09(59)		$\begin{bmatrix} C_{le} \end{bmatrix} e \mu \mu e \begin{bmatrix} 11.4(0.8) \\ 0.2(0.0) \end{bmatrix}$
$[\delta g_R^{Ze}]_{\tau\tau}$		0.61(62)		$\begin{bmatrix} C_{le} \end{bmatrix}_{ee\mu\mu} = \begin{bmatrix} 0.3(2.2) \\ 0.2(2.1) \end{bmatrix}$
$[\delta g_R^{\dot{W}q}]_{11}$		-3.8(8.1)	$\times 10^{-3}$	$\begin{bmatrix} C_{le} \end{bmatrix} \mu \mu ee = \begin{bmatrix} -0.2(2.1) \\ 0.2(2.2) \end{bmatrix} \times 10^{-2}$
$[\delta g_L^{Zu}]_{11}$	-	-7(22)	× 10 ,	$\begin{bmatrix} c_{ee}]_{ee\mu\mu} \\ [c_{ee}]_{ee\mu\mu} \end{bmatrix} = \begin{bmatrix} 0.2(2.3) \\ 0.60(68) \end{bmatrix} \times 10^{\circ},$
$[\delta g_R^{Zu}]_{11}$		4(29)		$\begin{bmatrix} Cll \end{bmatrix}_{e\tau\tau e} \begin{bmatrix} -0.00(08) \\ 2(11) \end{bmatrix}$
$[\delta g_L^{Zd}]_{11}$		-13(35)		$\begin{bmatrix} Cll \end{bmatrix} ee \tau \tau \qquad 2(11) \\ \begin{bmatrix} e_t \end{bmatrix} \qquad 2 \ 3(7 \ 2) \end{bmatrix}$
$[\delta g_R^{Zd}]_{11}$		10(120)		$\begin{bmatrix} c_{le} \end{bmatrix}_{ee\tau\tau} = 2.0(1.2)$
$[\delta g_L^{Zu}]_{22}$		-1.5(3.6)		$\begin{bmatrix} c_{le} \end{bmatrix}_{\tau \tau \tau ee} = \begin{bmatrix} 1.1(1.2) \\ -1(12) \end{bmatrix}$
$[\delta g_R^{Zu}]_{22}$		-3.3(5.3)		$\begin{bmatrix} c_{ee} \end{bmatrix} ee\tau\tau$ $1(12)$ $\begin{bmatrix} \hat{c}_{u} \end{bmatrix}$ $2(21)$
$[\delta g_L^{Zd}]_{22}$		14(27)		$\begin{bmatrix} c_{ll} \end{bmatrix} \mu $
$[\delta g_R^{Zd}]_{22}$		34(46)		$\begin{bmatrix} c_{ll} \\ c_{ll} \end{bmatrix}$ $\begin{bmatrix} 1.0(1.0) \\ 19(15) \end{bmatrix}$
$[\delta g_L^{Zd}]_{33}$		3.2(1.7)		$\langle [0e]\mu\tau\tau\mu\rangle$ $\langle 10(10)\rangle$
$\langle [\delta g_R^{Zd}]_{33} \rangle$	/	122(8.8) /		
$\left([c_{la}^{(3)}]_{ee11} \right)$		(0.1(2.8)))	
$[\hat{c}_{eq}]_{ee11}$		-4(30)		
$[\hat{c}_{lu}]_{ee11}$		-2.5(8.7)		
$[\hat{c}_{ld}]_{ee11}$		-2(18)		
$[\hat{c}_{eu}]_{ee11}$		-3.1(9.4)		
$[\hat{c}_{ed}]_{ee11}$		-2(17)		$\left(\begin{bmatrix} c_{lg}^{(3)} \end{bmatrix}_{\mu\mu 11} \right) \left(3.0(3.5) \right)$
$[c_{lequ}^{(1)}]_{ee11}$		-0.017(60)		$[c_{lq}]_{\mu\mu11}$ $-0.2(5.8)$
$[c_{ledq}]_{ee11}$		-0.018(57)		$[c_{lu}]_{\mu\mu11}$ 2.5(6.5)
$[c_{lequ}^{(3)}]_{ee11}$		0.023(66)		$[c_{ld}]_{\mu\mu11}$ 5(24)
$[\hat{c}_{la}^{(\hat{3})}]_{ee22}$	=	-61(32)	$\times 10^{-2}$,	$\left \begin{array}{c} [\hat{c}_{eq}]_{\mu\mu11} \\ \end{array} \right = \left \begin{array}{c} 3(41) \\ \end{array} \right \times$
$[c_{lu}]_{ee22}$		2.4(8.0)		$\epsilon_P^{d\mu}(2 \text{ GeV}) = -0.080(95)$
$[\hat{c}_{ld}]_{ee22}$		-300(130)		$[c_{lq}^{(3)}]_{\tau\tau 11}$ -0.3(2.8)
$[c_{eq}]_{ee22}$		-21(28)		$[c_{leau}^{(3)}]_{\tau\tau 11}$ -0.3(1.2)
$[c_{eu}]_{ee22}$		-87(46)		$\left(\epsilon_P^{d\tau}(2 \text{ GeV}) \right) = \left(\begin{array}{c} 0.93(85) \end{array} \right)$
$[\hat{c}_{ed}]_{ee22}$		250(140)		
$[\hat{c}_{la}^{(3)}]_{ee33}$		-8.5(8.0)		
$[c_{ld}]_{ee33}$		-1(10)		Breso-Pla et al
$[c_{eq}]_{ee33}$		-3.1(5.1)		arXiv:2301.07036
$\left[c_{ed} \right]_{ee33}$		18(20)	/	

Ingredients

- e^+e^- collisions
- W boson mass and decays
- Drell-Yan at LHC and Tevatron
- Neutrino scattering on electrons
- Atomic parity violation
- Parity-violating electron scattering
- Nuclear beta decays
- Semi-leptonic decays of pions and kaons
- Trident muon production in ν scattering
- Leptonic and hadronic tau decays
- ν scattering on nuclei (coherent to not)

Correlation matrix

Only 65 dimension-6 Wilson coefficients simultaneously constrained in this fit. Can do better :)

 10^{-2} .

SMEFT at higher dimensions

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$

Number of baryon-number-conserving operators as function of D and number of generations N_f

	N _f =0	N _f =1	N _f =2	N _f =3	
Dimension-5	0	2	6	12	
Dimension-6	15	76	582	2499	
Dimension-7	0	22	212	948	
Dimension-8	89	895	8251	36971	

SMEFT at higher dimensions

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{D=2} + \mathscr{L}_{D=4} + \mathscr{L}_{D=5} + \mathscr{L}_{D=6} + \mathscr{L}_{D=7} + \mathscr{L}_{D=8} + \dots$

Exponential growth of the number of operators with the canonical dimension D

SMEFT at higher dimensions

SMEFT at dimension-5:	Weinberg (1979) Phys. Rev. Lett. 43, 1566
SMEFT at dimension-6:	Grzadkowski et al arXiv: 1008.4884
SMEFT at dimension-7:	Lehman arXiv: 1410.4193
SMEFT at dimension-8:	Li et al arXiv: 2005.00008

SMEFT at dimension-9:

Li et al arXiv: 2012.09188

Code to generate a basis at arbitrary dimension in SMEFT:

 $\mathscr{L}_{\text{SMFET}} = \mathscr{L}_{D-2} + \mathscr{L}_{D-4} + \mathscr{L}_{D-5} + \mathscr{L}_{D-6} + \mathscr{L}_{D-7} + \mathscr{L}_{D-8} + \dots$

You need to be aware of the existence of higher-dimensional operators, whenever you need to argue validity of the EFT description

Moreover, a qualitatively new phenomenon may arise at higher dimensions

At tree level, light-by-light scattering receives contribution from dimension-8, which in some situations may compete with lower order loop contributions

> Neutron-antineutron oscillations arise at dimension-9

 $\mathcal{L}_{D=9} \supset \epsilon_{abc} \epsilon_{def} (d_a d_d) (q_b q_e) (q_c q_f) + \dots$

CP violating 3Z vertex in SMEFT from integrating out 2HDM arises via a dimension-12 operator!

 $\mathcal{L}_{D=12} \supset C_{12} [H^{\dagger} D^2 (H H^{\dagger} H)]^2 + \mathrm{h.c.}$

In all such cases however, you need to argue validity of your EFT and why you don't expect any larger effects of new physics from operators of lower dimensions

$$\mathscr{L}_{D=8} \supset (B_{\mu\nu}B_{\mu\nu})^2 + \dots$$

 $\mathscr{L}_{\text{SMFET}} = \mathscr{L}_{D-2} + \mathscr{L}_{D-4} + \mathscr{L}_{D-5} + \mathscr{L}_{D-6} + \mathscr{L}_{D-7} + \mathscr{L}_{D-8} + \dots$

You need to be aware of the existence of higher-dimensional operators, whenever you need to argue validity of the EFT description

Moreover, a qualitatively new phenomenon may arise at higher dimensions

If experiment pinpoints a coefficient of some operators of dimension-6, then subleading dimension-8 operators will provide precious information

Only determines coupling over mass scala of new physics

May allow disentangle coupling and mass