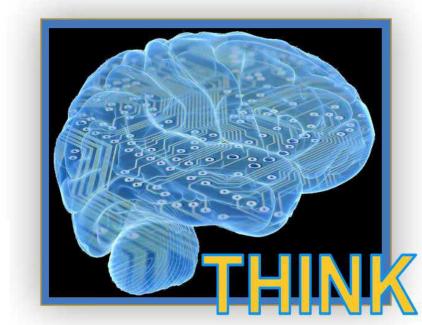
Le projet THINK

Testing Hardware Instantiations of Neural Kernels



J.-P. Cachemiche (CPPM)

V. Gligorov, O. Ledortz (LPNHE)

D. Etasse, J. Hommet (LPC Caen)

F. Bellachia, S. Lafrasse (LAPP

R. Bouet, F. Druillole, A. Rebii (CENBG)

F. Magniette, E. Sauvan (LLR)

G. Aad, Y. Boursier, T. Calvet, E. Fortin, E. Monnier (CPPM)

IN2R Frontera (CEA IRFU)

Motivation (1)

Evolution des détecteurs

- L'augmentation de la luminosité dans les détecteurs de physique, sous l'effet du bruit de fond et des phénomènes de pile-up, complexifie fortement la tâche des algorithmes de reconnaissance.
- D'une manière générale, ces détecteurs vont requérir plus d'intelligence pour filtrer efficacement les données.
- Cette problématique a donné naissances aux architectures triggerless dans lesquelles les données sont analysées par des mélanges complexes d'accélérateurs et de cartes GPUs.
- Une autre approche consiste à réduire les données au plus près de la source en injectant plus d'intelligence dans la chaîne d'acquisition hardware, éventuellement avec des techniques neuronales

Motivation (2)

Savoir faire actuel

- Techniques de bases neuronales et méthodologie connues par certains physiciens, mais peu connues par les ingénieurs
- Principalement implantées sur fermes de calcul, mais pratiquement pas dans les étages amonts, en particulier au niveau hardware
- Calcul neuronal implique la maîtrise de nombreux outils
 - Conda, jupyterlabs, python, matplotlib, pandas, caffe, scikit-learn, tensorflow, keras, pytorch, etc
 ...
 - Langages de haut niveau pour FPGA : OpenCL, HLS, etc ...
 - Nombreuses passerelles de translation entre deep learning et inférence, toutes hétérogènes :Vitis, HLS4ML, OpenVino, OneAPI, etc ...

Motivation (3)

Besoin d'évaluation globale

- Hiérarchisation des performances
 - Un GPU est-il plus rapide qu'un FPGA ou qu'un MPPA pour une application donnée ?
 - Investissement très important pour maîtriser une technique
- Limites
 - Type et taille des réseaux implémentables
 - Entrées-Sorties disponibles
 - Quelles applications se prêtent à de telles techniques
- Coûts
 - Matériels, outillages
 - Mais aussi en temps de main d'œuvre
 - Learning curve des outils
 - ▷ Efficacité
 - ▷ Facilité d'usage
- Accessibilité des outils
 - Déterminant pour choisir une architecture en début de projet

Objectifs du projet

Le projet se déroule en 7 étapes réparties sur 36 mois:

- Une phase de formation pour les ingénieurs et techniciens chargés de la mise en œuvre technique des différentes implantations.
- Dans une seconde phase, nous avons choisi deux applications typiques qui serviront de benchmark aux implémentations hardware.
- Une troisième phase consiste à définir une ou plusieurs structures de réseaux et à effectuer un apprentissage sur ces dernières. Cette phase peut se faire en simulation et ne dépend normalement pas de l'implémentation matérielle future.
- Quatre implémentation matérielles doivent être effectuées en parallèle sur respectivement FPGA, processeur MPPA, processeur neuromorphique et GPU.
- La phase suivante consistera à comparer les performances en terme de coût, de vitesse d'exécution, de consommation, etc ... La facilité d'évolution algorithmique et par conséquent la facilité de mise en œuvre des outils de portage fera également l'objet d'une comparaison.
- Enfin le projet se terminera par une phase de diffusion du savoir éventuellement soutenue par plusieurs workshops, ainsi qu'une mise à disposition des outils ou des blocs utilisés dans un espace commun.

Applications en support du projet

- Le projet Amidex OWEN (Optimal Waveform recognition Electronic Node) qui consiste à développer un nouvel instrument pour traiter le signal venant d'un détecteur innovant, une TPC sphérique à haute pression. Son but est la recherche d'un phénomène rare tel que la détection directe de matière noire et l'observation de la décroissance double béta sans neutrino. Dans ce contexte, il s'agit de développer un système d'acquisition intégrant un algorithme de problème inverse basé sur les réseaux de neurones pour l'identification des formes d'ondes
- Le projet RTA (Real-Time Analysis) dans l'expérience LHCb qui consiste à traiter 40 Tb des donnees par seconde pour n'en garder que 80Gb/s pour une analyse plus profonde offline.
 Pour ce faire RTA doit à la fois utiliser efficacement les architectures modernes de calcul, et mettre en place des algorithmes avancés de tels que les réseaux neurones.
- Le projet Amidex AIDAQ qui consiste à implémenter des algorithmes de reconnaissance neuronale sur FPGA dans le calorimètre à argon liquide d'ATLAS pour réaliser les fonctions de trigger de premier niveau en environnement fortement bruité et avec des niveaux de pile-up variables.
- Le projet HGCNN qui consiste à développer des outils d'analyse neuronale pour les données des calorimètres à haute granularité (comme le futur calorimètre HGCal de CMS). Ces outils doivent être intégrés dans des FPGA et fournir des primitives de déclenchement avec des latences de l'ordre de la microseconde.
- **Le projet imXgam** d'imagerie médicale par tomographie. On se propose de débruiter les images par des techniques neuronales

Etat de l'art en physique des particules

- Compilateurs : ex HLS4ML
- Etages amont : Implémentations principalement sur FPGA
 - Applications : Identification de jets, muon trigger, calcul d'énergie, etc ...
- Le plus souvent dans les étages aval : GPU, FPGA coprocesseurs
 - Hardware/firmware
 - · Fast inference of deep neural networks in FPGAs for particle physics [DOI]
 - Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML [DOI]
 - Fast inference of Boosted Decision Trees in FPGAs for particle physics [DOI]
 - GPU coprocessors as a service for deep learning inference in high energy physics
 - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics [DOI]
 - Studying the potential of Graphcore IPUs for applications in Particle Physics [DOI]
 - PDFFlow: parton distribution functions on GPU
 - FPGAs-as-a-Service Toolkit (FaaST) [DOI]
 - Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
 - PDFFlow: hardware accelerating parton density access [DOI]
 - Fast convolutional neural networks on FPGAs with hls4ml
 - Ps and Qs: Quantization-aware pruning for efficient low latency neural network inference
 - Sparse Deconvolution Methods for Online Energy Estimation in Calorimeters Operating in High Luminosity Conditions
 - Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physics
 - A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
 - Muon trigger with fast Neural Networks on FPGA, a demonstrator
 - Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
 - Graph Neural Networks for Charged Particle Tracking on FPGAs
 - Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors [DOI]
 - Ephemeral Learning Augmenting Triggers with Online-Trained Normalizing Flows
 - Ultra-low latency recurrent neural network inference on FPGAs for physics applications with hls4ml
 - Nanosecond machine learning regression with deep boosted decision trees in FPGA for high energy physics

Organisation projet

Projet démarré en mars 2020

7 laboratoires impliqués

Responsabilités

- LPC Caen: Portage sur MPPA, éventuellement sur carte développée par le laboratoire
- **LAPP**: Portage sur processeur neuromorphique
- **LPNHE**: Portage sur FPGA et GPU
- **LP2IB**: Portage sur FPGA Xilinx
- **IRFU/AIM**: Aspects théoriques et formation
- **LLR**: Optimisation Bayesienne
- CPPM: coordination du projet, portage sur FPGA Intel et sur GPU

8

Supports hardwares envisagés

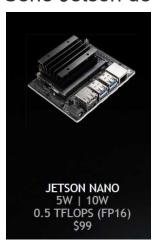
Cartes GPU

Rien d'innovant en première approche

- Déjà très utilisé dans les centres de calcul
- Plutôt utilisé en tant que référence pour les benchmarks
- Possibilité de s'appuyer sur les GPU du mésocentre MUST mis à disposition par le LAPP (cartes Tesla K80 et V100)

Cependant produits dérivés embarquables très intéressants

Série Jetson de nVidia



Et bientôt ...

Jetson série /	AGX Orin	Kit de					
Jetson AGX Orin 32 Go	Jetson AGX Orin 64 Go	développement Jetson AGX Orin					
200 TOPs	275 TOPs						
GPU 1792 cœurs à architecture NVIDIA Ampere (avec 56 cœurs Tensor)	laver 64 c) cœurs à ire NVIDIA Ampere œurs Tensor)					

FPGAs

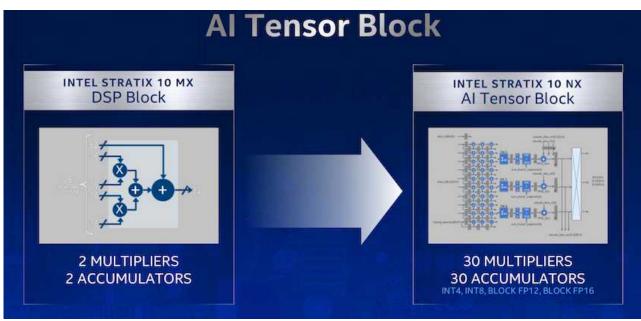
FPGA déjà adaptés par nature au calcul neuronal

 Nombreux outils ciblés avec bibliothèques des principaux réseaux (ResNet, Mobile net, Yolo, etc.)

cf_FPN-resnet18_EDD_320_320_45.3G_1.3
cf_FPN-resnet18_Endov_240_320_13.75G_1.3
cf_SPnet_aichallenger_224_128_0.54G_1.3
cf_VPGnet_caltechlane_480_640_0.99_2.5G_1.3
cf_densebox_wider_320_320_0.49G_1.3
cf_densebox_wider_360_640_1.11G_1.3
cf_face-quality_80_60_61.68M_1.3
cf_facerec-resnet20_112_96_3.5G_1.3
cf_facerec-resnet64_112_96_11G_1.3
cf_fpn_cityscapes_256_512_8.9G_1.3
cf_hourglass-pe_mpii_256_256_10.2G_1.3

Sortie de produits plus ciblés :

- Stratix NX d'Intel
 - Tensor blocs intégrés
 - Intégration de larges blocs mémoires à haute vitesse

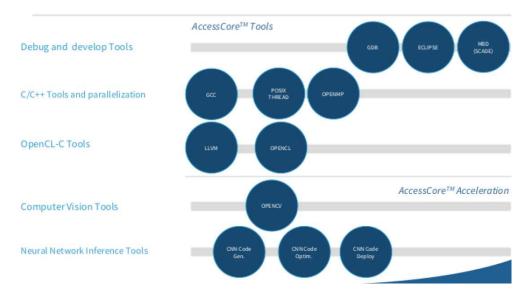


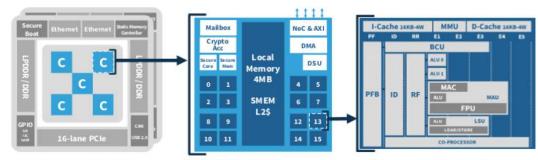
 « Intel says its Stratix 10 NX device is up to 2.3X faster than Nvidia V100 GPUs for BERT batch processing, 9.5X faster in LSTM batch processing, and 3.8X faster in ResNet50 batch processing

MPPA (Massively Parallel Processor Array)

Coolidge de Kalray

- 80 ou 160 processeurs sur un même chip
- Versions à 288 et 512 cœurs en préparation
- Outils de portage DNN basés sur OpenCL
- Jusqu'à 8 Tflops en FP16
 - Mais puissance conditionnée à l'usage des coprocesseurs (actuellement verrouillés)





MANY CORE PROCESSOR

Architecture updates

- 80 or 160 CPU cores
- 600/900/1200MHz frequency modes
 Memory
- L2 refill in DDR and Direct access to DDR from clusters

COMPUTE CLUSTER

- Architecture updates
 16 CPU 64-bit cores
- 16 Co-processor
- · Safety/Security 64-bit core

Memory

- · L1 cache coherency (configurable)
- 4MB memory (BW = 614GB/s)

3RD GENERATION VLIW CORE

Architecture updates

- 64-bit core
- 6-issue VLIW architecture
- MMU + I&D cache (16KB+16KB)
- . 16-bit/32-bit/64-bit IEEE 754-2008 FPU
- Vision/CNN Co-processor

		Coolidge-80 v1 @1.2 GHz	Coolidge -80 v2 @1.2 GHz	Coolidge -160 v2 @1.2 GHz	NVIDIA Xavier
	Core	N/A	N/A	N/A	N/A
INTS	Сорго	24.6 TOPS	49.2 TOPS	98.4 TOPS	20 + 10
	TOTAL	24.6 TOPS	49.2 TOPS	98.4TOPS	30 TOPS
	Core	2 TOPS	2 TOPS	4 TOPS	
INT16	Сорго	12.3 TOPS	24.6 TOPS	49.2 TOPS	10+5
	TOTAL 14.3 TOPS	14.3 TOPS	26.6 TOPS	53.2 TOPS	15 TOPS
	Core	1,15 TFLOPS	1,15 TFLOPS	2.3 TFLOPS	
FP16	Copro	3.05 TFLOPS	3.05 TFLOPS	6.1 TFLOPS	10+5
	TOTAL	4.2 TFLOPS	4.2 TFLOPS	8.4 TFLOPS	15 TFL OPS
	Core	1,15 TFLOPS	1.15 TFLOPS	2,3 TFLOPS	
FP32	Copro	N/A	N/A	N/A	1.3 TFLOPS
	TOTAL	1.15 TFLOPS	1.15 TFLOPS	2.3 TFLOPS	1.3 TFLOPS
Power		25W	30W	60W	30W

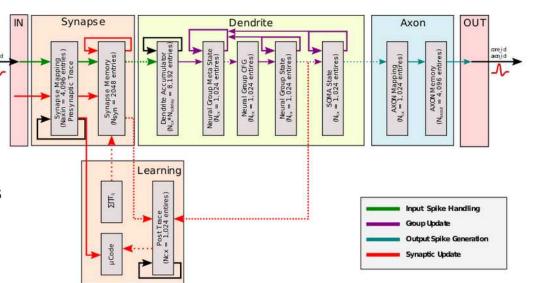
Chip neuromorphiques

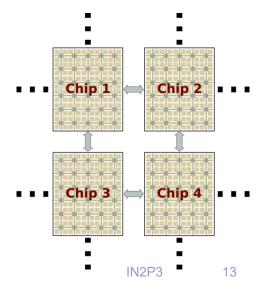
LoiHi d'Intel

- 128 neuromorphic cores + 3 x86 cores
- 130000 neurones, 130 millions de synapses
- Cascadable dans 4 directions
- Spiking Neural Network (SNN):
 - Suite d'impulsions chronologiquement ordonnées
 - Règle mettant à jours les poids synaptiques en fonction des temps de spikes
 - → Pas de descente de gradient.

Difficultés

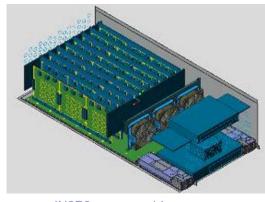
- Pratiquement aucune information d'Intel
- Devons soumettre un projet jugé intéressant pour avoir accès





Systèmes basés sur LoiHi

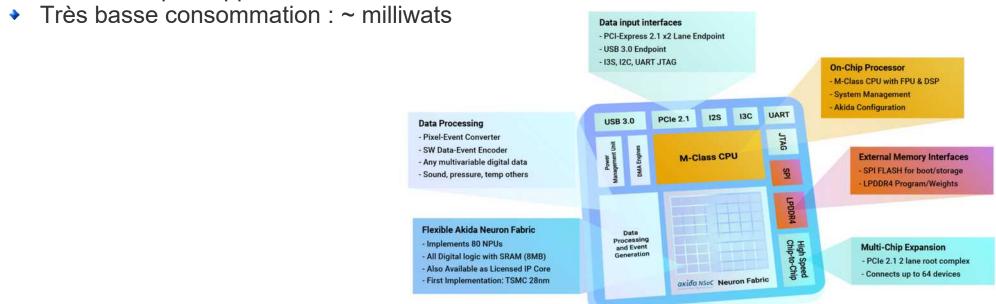
De la clé USB jusqu'à 768 chips interconnectés



Chips neuromorphiques

BrainChip d'Akida

- 1.2 million de neurones et 10 milliards de synapses
- Facteur 10 par rapport à la concurrence



Actions menées jusqu'à présent

Cours théoriques

- 12 sessions organisées
- Disponibles sur le site du projet
- Sessions enregistrées (sauf la première)
- Exercices et corrigés

Trainings

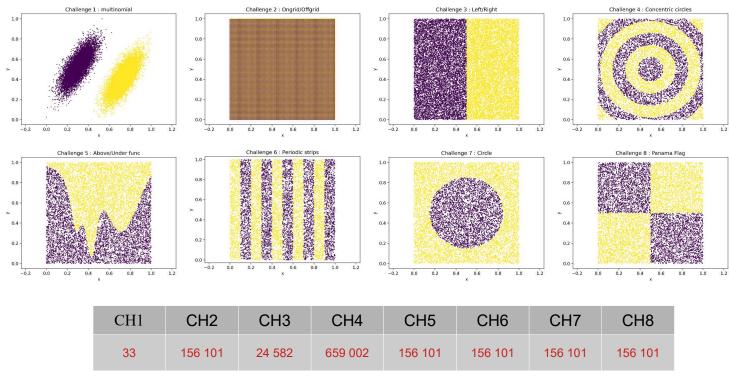
- 4 sessions avec industriels : Xilinx, nVidia, Kalray, Intel

Définition de 2 benchmarks

- Calcul d'énergie pour le calorimètre d'ATLAS : Recursive Neural Network
- Débruitage d'images ImXgam : Autoencoder
 - Choix basé sur la disponibilité immédiate de données
- Besoin d'un benchmark plus simple pour faciliter la première implémentation cross plateforme
 - Les Challenges

Les Challenges

- Problèmes simples permettant de mettre en place rapidement les chaînes de développement
- 8 challenges proposés par Frédéric Magniette



Nombre de paramètres en fonction du réseau étudié

Premiers résultats

Outils, plateformes

Exemples d'application en physique des particules
Impact architectural

FPGA

Stage 1 Stage 2 Stage 3 Loop Iterations Stage 1 Stage 2 Stage 3 Unroll Loop Iterations Stage 1 Stage 2 Stage 3 Unroll Stage 1 Stage 2 Stage 3 Loop Iteration 2 Stage 1 Stage 2 Stage 3 Iteration 2 Stage 2 Stage 3 Iteration 3 Iteration 3 Iteration 3

Exemple challenge 5 avec FPGA Intel

- **HLS** : implémentation discrète des couches denses
 - Vanilla : Une implémentation qui ne contient pas d'optimisations dans le code.
 - Pipeline : Une implémentation dans laquelle on pipeline le réseau.
 - Unroll : Une implémentation dans laquelle on ouvre la totalité des boucles.
 - U+p : Une implémentation dans laquelle on ouvre une partie des boucles (les boucles imbriquées)
 + pipeline du réseau.

	ALUTS	FFs	RAMs	MLABs	DSPs	Débit (FPS)
Ch5 vanilla	1 669	2 193	32	16	2.5	2 556
Ch5 pipeline	2 617	6 074	35	76	2.5	3 839
Ch5 unroll	oll 569 249 196		6	40	0	240 000 000
Ch5 u+p	17 560	23 244	507	237	50.5	952 380

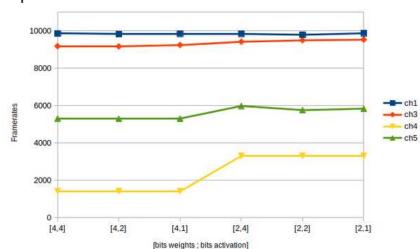
- **OpenAl**: processeur neuronal lisant un jeu d'instructions
 - Just-In-Time : Le réseau est compilé au moment de l'inférence.
 - Ahead-of-Time : Le réseau a été compilé au préalable.
 - -niter : Nombre d'entrées à traiter.
 - -nireq : Nombre d'exécutions en parallèle (sous multiple de niter).
 - -api : Mode dans lequel on utilise l'API (async ou sync).

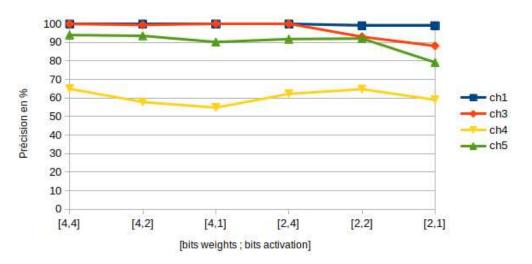
-api	-niter	-nireq	FPS JIT	FPS AOT
async	12	6	18 662	7 498
async	12	4	13 506	6 903
async	12	3	13 450	6 281
async	12	2	11 075	5 852
async	12	1	6 317	4 116
sync	12	Х	14 023	9 596

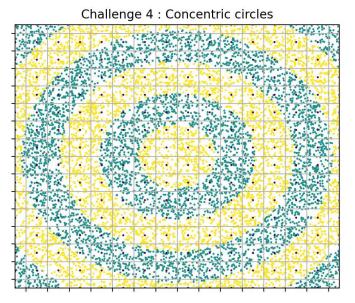
Chip neuromorphique

Exemple challenge 4 sur Brainchip

- Perte de précision importante : 70 %
- Lié aux limitations du chip
 - Quantification sur 4 bits
 - Erreur d'arrondi de position
- Performance en FPS similaire à celle d'un processeur neuronal sur FPGA







- → Peu d'avantage tiré du nombre de neurones car chaque couche consomme 1 NPU (57334 neurones) : 1 challenge comporte entre 2 et 6 couches 80 NPU disponibles
- → Limitations de bande passante

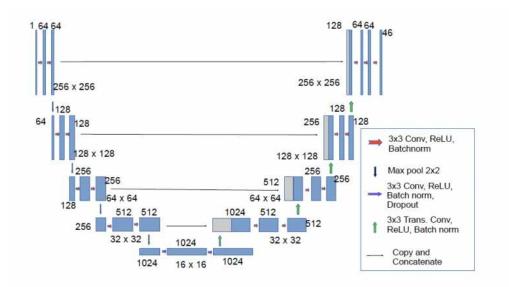
Chip neuromorphique

Exemple Benchmark #2 sur Brainchip

- Débruitage d'image
- Basé sur réseau U-Net

Difficultés d'implémentation

- Brainchip prend en charge :
 - Couches convolutives
 - Max Pooling
 - Couches denses (non nécessaires dans U-Net)
- Fonctions non prises en charge :
 - Conv2DTranspose : utile lors de la remontée
 - Concatenate
 - → Perte d'efficacité car fonctions devant être exécutées à l'extérieur du chip



HLS4ML

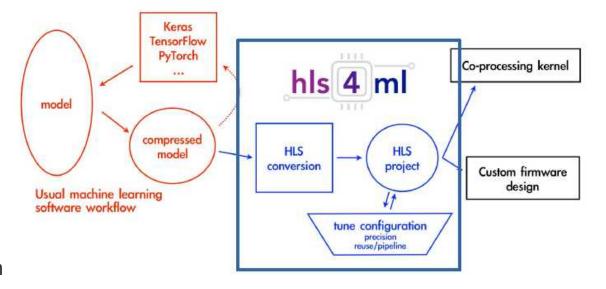
Passerelle AI tools vers HLS

- Formats supportés :
 - Keras, TF
 - Pytorch
 - ONNX
- Contient des outils d'optimisation ciblés pour chaque FPGA
- Version initiale Xilinx/AMD
- Portage vers Altera/Intel

Développé par ingénieurs physique des particules

En développement

Architectures/Toolkits	Keras/TensorFlow	PyTorch	scikit-learn
MLP	supported	supported	
Conv1D/Conv2D	supported	in development	歪
BDT	*	報	supported
RNN/LSTM	in development	55	π:



Contributors

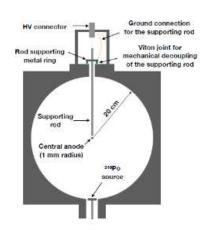
- Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers [CERN]
- · Javier Duarte [University of California San Diego]
- · Sergo Jindariani, Benjamin Kreis, Ryan Rivera, Nhan Tran [Fermilab]
- Edward Kreinar [Hawkeye360]
- · Song Han, Philip Harris, Dylan Rankin [MIT]
- · Zhenbin Wu [University of Illinois at Chicago]
- · Mark Neubauer [University of Illinois Urbana-Champaign]
- · Shih-Chieh Hsu [University of Washington]
- · Giuseppe Di Guglielmo [Columbia University]
- · Duc Hoang [Rhodes College]
- Noah Paladino [Rutgers University]

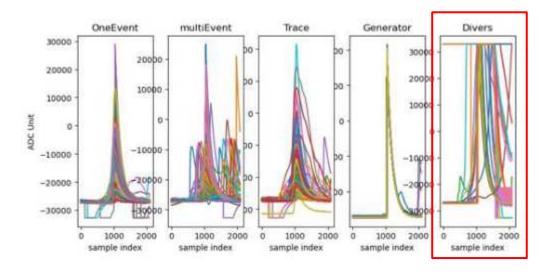
Plus d'information : https://fastmachinelearning.org/hls4ml

Application : classification de formes d'ondes

Projet OWEN

- Détection directe de matière noire et l'observation de la décroissance double béta sans neutrino
- Faisabilité d'un trigger hardware opérant par classification

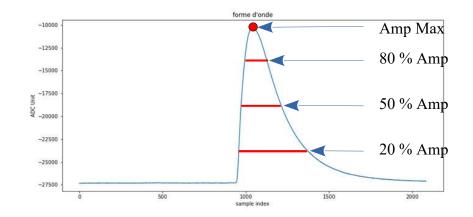




Réseau uniquement dense layers

Phase d'apprentissage

- Courbes de 2084 échantillons
- 21000 données taggées



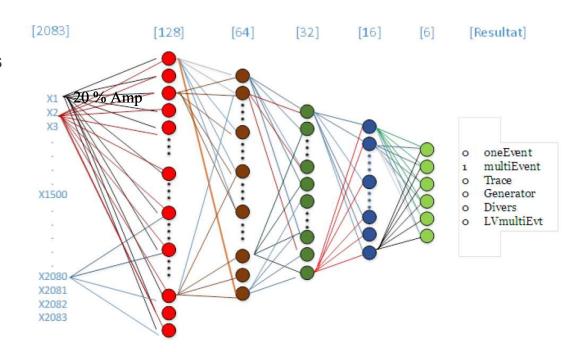
Structure du réseau

- 5 couches
- Environ 114000 paramètres

Model: "sequential 1"

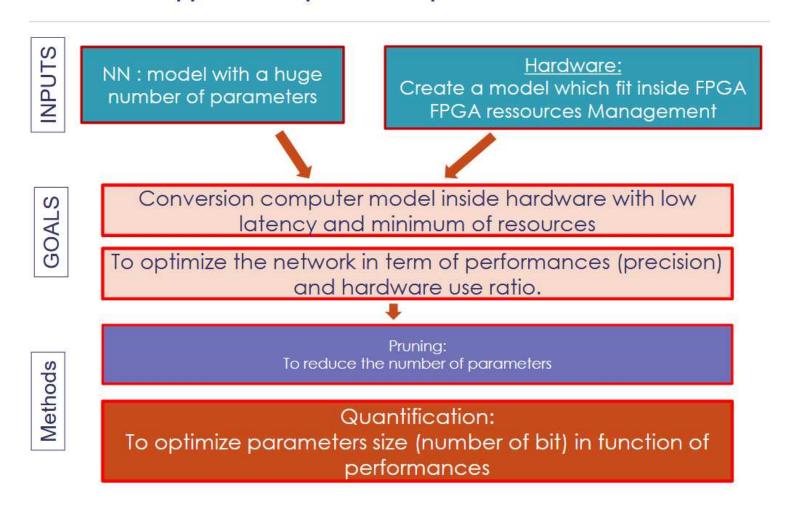
Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 512)	1067008
dense_2 (Dense)	(None, 128)	65664
dense_3 (Dense)	(None, 32)	4128
dense_4 (Dense)	(None, 16)	528
dense_5 (Dense)	(None, 6)	102

Total params: 1,137,430 Trainable params: 1,137,430 Non-trainable params: 0



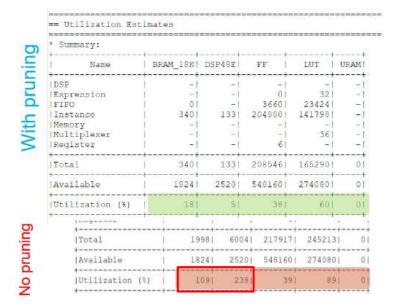
Exploration de la problématique de réduction des données

Embedded approach: a question of optimization

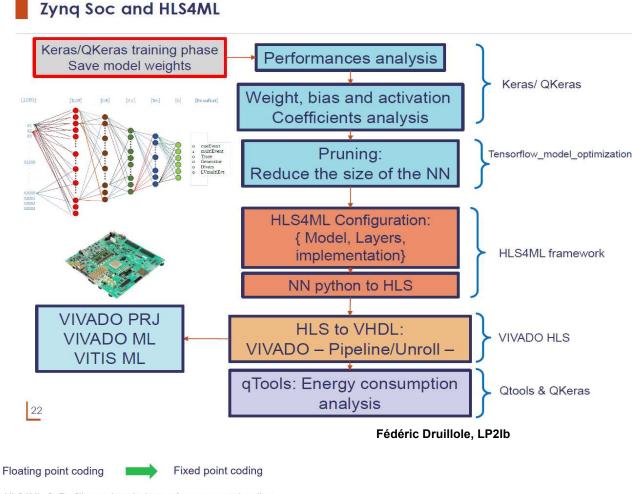


Implémentation

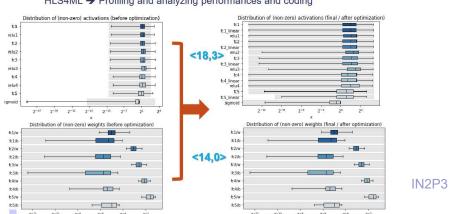
Utilisation de Qkeras pour le pruning



Utilisation de HLS4ML pour la quantification



HLS4ML → Profiling and analyzing performances and coding



Résultats provisoires

Testé sur 2 design kits Xilinx

- ZCU102
- ZCU104

Developm ent board	PC on Windows	ARTY Z7	ZCU102 (default setting)	ZCU102 (default setting)	ZCU102 (pruning)	ZCU104 (pruning)	ZCU104 (QKeras)	ZCU104 (QKeras)	ZCU102 (Qkeras)
Number of bits (Nbits, Integer size)	(32,32)	(16,6)	(16,6)	(32,8)	(20,6)	(20,6)	(16,6)	(20,6)	(16,3)
Number of DSP	20 Core	509/220	140	140	133	275	5852	5852	6004
Number of slice	=:	170000	156263	156263	165290	163678	307125	250761	245213
Result speed	NA	NA	10,43µs	10,43µs	20,85µs	10,43µs	10,43µs	10,43µs	10,43µs
Score (good answer)	79,7%	45%	65%	76.3%	79,6%	74,2%	72-79%	72-79%	72-79%
Used ressources (DSP/LUT)		231%/310 %	5%/57%	5%/57%	5%/60%	15%/75%	338%/104%	338%/108%	238%/89%

Résults inégaux

- Bonne identification du cas physique ou du générateur
- Problème de précision pour autre cas ou apprentissage insuffisant
 - → En cours d'investigation

Categories	% Bonnes reponses	% Mauvaises réponses
oneEvent	52.4	47.6
MultiEvent	61.3	38.7
Trace	43.4	56.6
Generateur	94.0	6.0
Divers	98.3	1.7
Signaux_faibles	99.4	0.6

Maîtrise de l'ensemble de la chaîne de développement

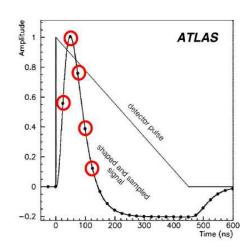
Application: trigger LAr calorimeter ATLAS

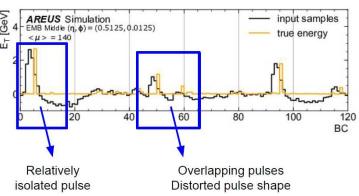
Reconstruction d'énergie sur FPGA

- Principe initialement choisi : filtre optimal
 - → Peu robuste en cas d'impulsions distordues en raison de phénomènes de pile-up
- Utilisation de techniques neuronales
- Très fortes contraintes :
 - 384 voies de mesure
 - Latence limitée : 125 ns

2 types de réseaux neuronaux envisagés

- Réseaux convolutifs (CNN)
- Réseaux récursifs (RNN)





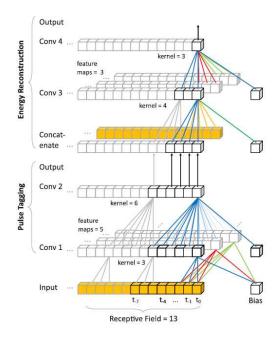
CNN pour Trigger ATLAS

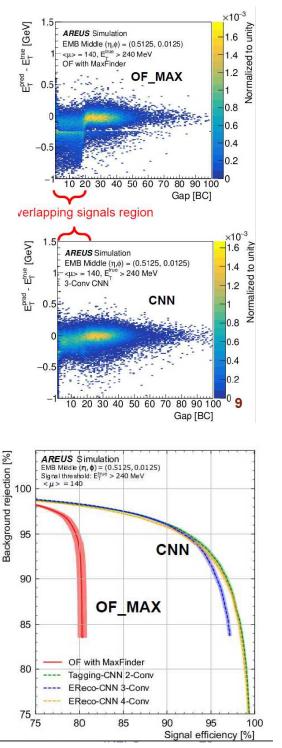
Performances

- Meilleure réjection de bruit
- Moins de signaux mal taggés temporellement

Implémentation

2 étages convolutifs analysant 13 bunch crossings





RII – 28 octobre 2022 Le projet THINK

Courtesy George Aad, CPPM

RNN pour trigger ATLAS

Performances

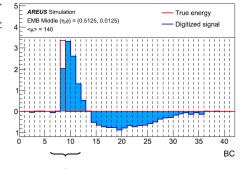
Résultats légèrement moins bons mais suffisants

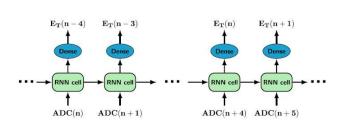
Implémentation

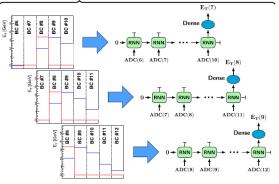
2 types de cellules testées

LSTM Vanilla cells

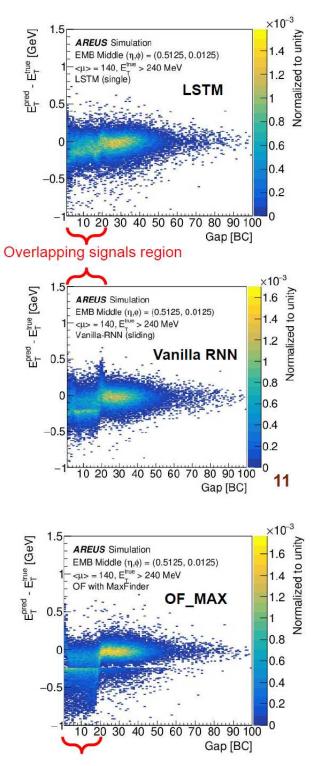
_







Le projet THINK



George Aad, CPPM

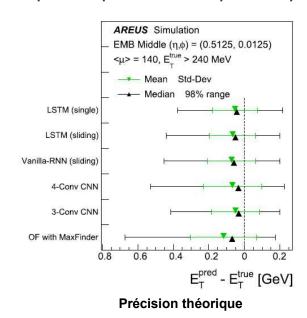
Choix d'implémentation

Critères

- Optimisation des ressources

Algorithm	LSTM (single)	LSTM (sliding)	Vanilla (sliding)	CNN (3-conv)	CNN (4-conv)	Optimal filtering	
Number of parameters	491	491 491 89		94	88	5	
MAC units 480		2360	368	87	78	5	

Moins de pertes posssibles après implémentation firmware



Précision après implémentation firmware

Implémentation de CNN et de RNN en Vanilla cells

Implémentation en RNN

Réalisé avec HLS

- HLS permet d'obtenir des résultats rapidement mais relativement peu optimisés

Travail d'optimisation manuel indispensable

- Nombre d'ALM:
 - Sur HLS : 226 % → 23 %
 - Sur VHDL : 23 % → 18 %
- Nombre de DSPs:
 - Sur HLS : 529 $\% \rightarrow 100 \%$
 - Sur VHDL : $100 \% \rightarrow 66 \%$

RNN firmware results

- HLS allows fast development and optimisation of the firmware
 - o Multiple developments and optimisations of RNN firmware in a short time
 - RNN for INTEL FPGAs implemented in <u>HLS4ML</u> for wider usage
- VHDL is needed to fine tune the design and fit the LAr requirements
- Vanilla RNN firmware produced and fit the requirements with Stratix 10
 - o Better performance expected with the Agilex FPGA
 - o However still need to test it within the full LASP firmware

	N networks x multiplexing	ALM	DSP	FMax	latency
target	384 channels	30%*	70%*	-	125 ns
HLS (no multiplexing)	384x1	226%	529%	-	322 ns
HLS optimized	37x10	23%	100%	414 MHz	302 ns
VHDL optimized	28x14	18%	66%	561 MHz	121 ns

Domaine de fonctionnement

RNN sur Stratix10 pour calorimètre ATLAS

Hidden	6	Multiplexing													
Dimensions	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	411	822	1234	1645	2057	2468	2880	3291	3702	4114	4525	4937	5348	5760	6171
3	213	426	640	853	1066	1280	1493	1706	1920	2133	2346	2560	2773	2986	3200
4	130	261	392	523	654	785	916	1047	1178	1309	1440	1570	1701	1832	1963
5	88	177	265	354	443	531	620	708	797	886	974	1063	1152	1240	1329
6	64	128	192	256	320	384	448	512	576	640	704	768	832	896	960
7	48	96	145	193	242	290	338	387	435	484	532	580	629	677	726
8	37	75	113	151	189	227	265	303	341	378	416	454	492	530	568
9	30	60	91	121	152	182	213	243	274	304	335	365	396	426	457
10	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375
11	20	41	62	83	104	125	146	167	188	209	230	251	272	293	314
12	17	35	53	71	88	106	124	142	160	177	195	213	231	248	266
13	15	30	45	61	76	91	106	122	137	152	168	183	198	213	229
14	13	26	39	53	66	79	92	106	119	132	145	159	172	185	199

Nombre de voies implémentables (doit être > 384)

Etienne Fortin, CPPM

Plus d'information : https://link.springer.com/content/pdf/10.1007/s41781-021-00066-y.pdf

Impact du projet sur choix d'architecture

Faster V3

- Initialement prévu avec un chip Kalray
- Actuellement en migration vers un Jetson Xavier NX

Carte low cost avec 2 FPGAs, un CPU 6 cœurs, et un GPU!

Deep learning ready

	NANO	TX2 NX	XAVIER NX	XAVIER
AI PERFORMANCE	472 GFLOP	1.33 TFOPS	21 TOPS	32 TOPS
GPU	128 Cores (Maxwell)	256 Cores (Pascal)	384 Cores (Volta) 48 Tensor Cores	512 Cores (Volta) 64 Tensor Cores
СРИ	Quad-Cores A57	Quad-Cores A57 Dual-Cores Denver	6-cores Carmel	8-cores Carmel
DDR4	4 Go (64bits)	4 Go (128Bits)	8 Go (128 bits)	32Go (256 bits)
Stockage	16 Go	32 Go	16 Go	32 Go
PCle	4x Gen2	2* Gen2 1* Gen2	4* Gen4 1* Gen3	8*, 4*, 2*,1*,1* Gen4
POWER	5/10 W	7.5/15 W	10/15 W	10/15/30 W
COST	129 \$	199\$	479\$	

KALRAY MPPA COOLIDGE

- 600/900/1200 MHz frequency modes
- 5 or 10 Compute Cluster
- 4 MB -> 1 Cluster (20/40 MB)
- 16 CPU cores 64 bits -> 1 Cluster
- 80 or 160 CPU cores
- 3 or 6 TFLOPS
- 2 * 100 Gbe (x->10Gbe, y->1Gbe, w-> 40Gbe)
- 2 * 8 lane PCle Gen4
- 5 15 W / 5-30 W
- 900€

PROCESSOR MANY

CORE

Conclusion

Difficultés rencontrées

- Domaine extrêmement actif: très difficile de maintenir un état de l'art à jour
- Complexité d'appréhension des nombreux outils
- Accès à certains outils ou licences
- En particulier si on ne peut pas se référer à une application avec de gros volumes
- Problèmes de disponibilité de certains membres du projet : habituel dans projets transverses
 - Prolongation du projet d'un an

Premiers résultats

- Même si performances séduisantes pour les chips neuromorphiques, de nombreuses limitations sous-jacentes. Mais peut changer avec nouvelles versions.
- Les FPGA semblent le meilleur compromis en ratio performance /bande passante pour les étages amont
- Les passerelles ou langages de haut niveau ne dispensent pas d'un travail d'optimisation important pour tenir les contraintes temps réel ou de taux d'occupation.

Les résultats sont progressivement mis à disposition sur le site web du projet (http://think.in2p3.fr) et sur gitlab

- Exemples d'implémentations sur chaque hardware, Méthodologies
- Documentations outils de développement
- Mesures de performances, comparaisons, ...
- Liens utiles, etc ...

Plus d'information

- Site du projet THINK : http://think.in2p3.fr
- Projet OWEN: https://r2d2.in2p3.fr/owen.html
- Projet AIDAQ: https://link.springer.com/content/pdf/10.1007/s41781-021-00066-y.pdf
- HLS4ML: https://fastmachinelearning.org/hls4ml/index.html
- Brainchip: https://brainchip.com/
- Intel Loihi : https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
- Jetson nVidia: https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/
- Kalray: https://www.kalrayinc.com
- Présentations du projet ANF Raw to Smart Data :
 - https://indico.in2p3.fr/event/24579/sessions/15348/#20211118
 - https://indico.in2p3.fr/event/24579/sessions/15348/#20211119